Skip to content
Programming101
Programming101

Learn everything about programming

  • Home
  • CS Subjects
    • IoT – Internet of Things
    • Digital Communication
    • Human Values
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programming101
Programming101

Learn everything about programming

Traversing in a Binary Tree

YASH PAL, 3 June 202028 May 2024

Traversing a binary tree means visiting each node of the tree exactly once. and as we know the nodes of the tree are arranged in a hierarchical order so there are different ways to traverse a binary tree.

we have three main tasks to traverse in the tree.

  • visiting the root node.
  • visiting the left subtree.
  • visiting the right subtree.

Types of traversing in a binary tree.

  • Preorder
  • Postorder
  • In order
  • Level order 

Preorder Traversing

In preorder traversing first, we
visit the root node.
then we traverse the left subtree of the root node in preorder
then we traverse the right subtree of the root node in preorder

In order Traversing

In inorder traversing first, we
Traverse the left subtree of the root node in inorder
then we visit the root node
then we traverse the right subtree of the root in order

Postorder traversing

In postorder traversing first, we
Traverse the left subtree of the root node in postorder
Traverse the right subtree of the root node in postorder
visit the root node.

Level order Traversing

In level order traversing nodes are traversed level by level. so we have a binary tree as you see in the given below image.

traversing in binary tree in data structures

so the Preorder traversing is – P A S T Q E D X M R C

Postorder traversing – T Q S D E A M C R X P

In order traversing – T S Q A E D P M X C R

Level order traversing – P A X T Z M G Y L F C

Program to implement traversing in the binary tree using Python.

from collections import deque


class Node:
    def __init__(self, value):
        self.info = value
        self.lchild = None
        self.rchild = None

class BinaryTree:
    def __init__(self):
        self.root = None
    def is_empty(self):
        return self.root is None
    def display(self):
        self._display(self.root, 0)
        print()

    def _display(self,p,level):
        if p is None:
            return        self._display(p.rchild, level+1)
        print()

        for i in range(level):
            print(" ", end='')
        print(p.info)
        self._display(p.lchild, level+1)

    def preorder(self):
        self._preorder(self.root)
        print()

    def _preorder(self,p):
        if p is None:
            return        print(p.info, " ", end='')
        self._preorder(p.lchild)
        self._preorder(p.rchild)

    def inorder(self):
        self._inorder(self.root)
        print()

    def _inorder(self,p):
        if p is None:
            return        self._inorder(p.lchild)
        print(p.info," ", end='')
        self._inorder(p.rchild)

    def postorder(self):
        self._postorder(self.root)
        print()

    def _postorder(self,p):
        if p is None:
            return        self._postorder(p.lchild)
        self._postorder(p.rchild)
        print(p.info," ",end='')

    def level_order(self):
        if self.root is None:
            print("Tree is empty")
            return
        qu = deque()
        qu.append(self.root)

        while len(qu) != 0:
            p = qu.popleft()
            print(p.info + " ", end='')
            if p.lchild is not None:
                qu.append(p.lchild)
            if p.rchild is not None:
                qu.append(p.rchild)

    def height(self):
        return self._height(self.root)

    def _height(self,p):
        if p is None:
            return 0
        hL = self._height(p.lchild)
        hR = self._height(p.rchild)

        if hL > hR:
            return 1 + hL
        else:
            return 1 + hR

    def create_tree(self):
        self.root = Node('p')
        self.root.lchild = Node('Q')
        self.root.rchild = Node('R')
        self.root.lchild.lchild = Node('A')
        self.root.lchild.rchild = Node('B')
        self.root.rchild.lchild = Node('X')


##########################
bt = BinaryTree()

bt.create_tree()

bt.display()
print()

print("Preorder : ")
bt.preorder()
print("")

print("Inorder : ")
bt.inorder()
print()

print("Postorder : ")
bt.postorder()
print()

print("Level order : ")
bt.level_order()
print()

print("Height of tree is ", bt.height())
Computer Science Tutorials Data Structures Tutorials computer scienceData Structure

Post navigation

Previous post
Next post
  • HackerRank Separate the Numbers solution
  • How AI Is Revolutionizing Personalized Learning in Schools
  • GTA 5 is the Game of the Year for 2024 and 2025
  • Hackerrank Day 5 loops 30 days of code solution
  • Hackerrank Day 6 Lets Review 30 days of code solution
©2025 Programming101 | WordPress Theme by SuperbThemes