For the **linked representation** of a **binary tree**, we use a node that has three parts. in the first part, we store the reference of the left child of the node in the right part, we store the reference of the right child and in the middle part, we store the value of the node.

let’s say we have a binary tree-like as you see in the image given below.

so the linked representation of a binary tree looks like this. if the node doesn’t have any left child node then the left part of the node is None. and if the node doesn’t have any right child then the right part of the node is None.

We also maintain the reference of the root node using a variable.

## Linked representation of Binary tree program in Python.

```
from collections import deque
class Node:
def __init__(self, value):
self.info = value
self.lchild = None self.rchild = None
class BinaryTree:
def __init__(self):
self.root = None
def is_empty(self):
return self.root is None
def display(self):
self._display(self.root, 0)
print()
def _display(self,p,level):
if p is None:
return self._display(p.rchild, level+1)
print()
for i in range(level):
print(" ", end='')
print(p.info)
self._display(p.lchild, level+1)
def preorder(self):
self._preorder(self.root)
print()
def _preorder(self,p):
if p is None:
return print(p.info, " ", end='')
self._preorder(p.lchild)
self._preorder(p.rchild)
def inorder(self):
self._inorder(self.root)
print()
def _inorder(self,p):
if p is None:
return self._inorder(p.lchild)
print(p.info," ", end='')
self._inorder(p.rchild)
def postorder(self):
self._postorder(self.root)
print()
def _postorder(self,p):
if p is None:
return self._postorder(p.lchild)
self._postorder(p.rchild)
print(p.info," ",end='')
def level_order(self):
if self.root is None:
print("Tree is empty")
return
qu = deque()
qu.append(self.root)
while len(qu) != 0:
p = qu.popleft()
print(p.info + " ", end='')
if p.lchild is not None:
qu.append(p.lchild)
if p.rchild is not None:
qu.append(p.rchild)
def height(self):
return self._height(self.root)
def _height(self,p):
if p is None:
return 0
hL = self._height(p.lchild)
hR = self._height(p.rchild)
if hL > hR:
return 1 + hL
else:
return 1 + hR
def create_tree(self):
self.root = Node('p')
self.root.lchild = Node('Q')
self.root.rchild = Node('R')
self.root.lchild.lchild = Node('A')
self.root.lchild.rchild = Node('B')
self.root.rchild.lchild = Node('X')
##########################
bt = BinaryTree()
bt.create_tree()
bt.display()
print()
print("Preorder : ")
bt.preorder()
print("")
print("Inorder : ")
bt.inorder()
print()
print("Postorder : ")
bt.postorder()
print()
print("Level order : ")
bt.level_order()
print()
print("Height of tree is ", bt.height())
```