Skip to content
Programming101
Programming101

Learn everything about programming

  • Home
  • CS Subjects
    • IoT – Internet of Things
    • Digital Communication
    • Human Values
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programming101
Programming101

Learn everything about programming

Postorder traversal of Binary tree

YASH PAL, 4 June 202028 May 2024

In postorder traversal of a binary tree, we first traverse the left subtree of the root node and then the right subtree of the root node, and then we traverse the root node of the binary tree.

Properties of postorder traversing

  1. Traverse the left subtree of the root in postorder
  2. Traverse the right subtree of the root in postorder
  3. Visit the root node.

let’s say we have a binary tree as you see in the image given below. 

postorder traversal in binary tree

to find the postorder of this tree we need to first divide the tree into the subtrees as you see in the image given below.

and as we know that in postorder we need to visit the left subtree and the right subtree and then the root node of the tree.

so the preorder of this tree is 

B C P

but B is also a subtree so the postorder of B is D E A

so the postorder of the tree is

D E A C P

now the D is also a subtree so the postorder of D is T Q S

so the post order of the tree is

T Q S E A C P

now the E is also a subtree so the post order of E is D E

so the postorder of the tree is

T Q S D E A C P

now the C is also a subtree so the post order of C is F G X

so the postorder of the tree is

T Q S D E A F G X P

but the F is also a subtree so the postorder of F is M

so the postorder of the tree is

T A S D E A M G X P

but the G is also a subtree so the postorder of G is C R

so the postorder of the tree is

T A S D E A M C R X P

This is the complete postorder of the binary tree.

Program to find the postorder of binary tree using Python.

from collections import deque


class Node:
    def __init__(self, value):
        self.info = value
        self.lchild = None        self.rchild = None

class BinaryTree:
    def __init__(self):
        self.root = None
    def is_empty(self):
        return self.root is None
    def display(self):
        self._display(self.root, 0)
        print()

    def _display(self,p,level):
        if p is None:
            return        self._display(p.rchild, level+1)
        print()

        for i in range(level):
            print(" ", end='')
        print(p.info)
        self._display(p.lchild, level+1)

    def preorder(self):
        self._preorder(self.root)
        print()

    def _preorder(self,p):
        if p is None:
            return        print(p.info, " ", end='')
        self._preorder(p.lchild)
        self._preorder(p.rchild)

    def inorder(self):
        self._inorder(self.root)
        print()

    def _inorder(self,p):
        if p is None:
            return        self._inorder(p.lchild)
        print(p.info," ", end='')
        self._inorder(p.rchild)

    def postorder(self):
        self._postorder(self.root)
        print()

    def _postorder(self,p):
        if p is None:
            return        self._postorder(p.lchild)
        self._postorder(p.rchild)
        print(p.info," ",end='')

    def level_order(self):
        if self.root is None:
            print("Tree is empty")
            return
        qu = deque()
        qu.append(self.root)

        while len(qu) != 0:
            p = qu.popleft()
            print(p.info + " ", end='')
            if p.lchild is not None:
                qu.append(p.lchild)
            if p.rchild is not None:
                qu.append(p.rchild)

    def height(self):
        return self._height(self.root)

    def _height(self,p):
        if p is None:
            return 0
        hL = self._height(p.lchild)
        hR = self._height(p.rchild)

        if hL > hR:
            return 1 + hL
        else:
            return 1 + hR

    def create_tree(self):
        self.root = Node('p')
        self.root.lchild = Node('Q')
        self.root.rchild = Node('R')
        self.root.lchild.lchild = Node('A')
        self.root.lchild.rchild = Node('B')
        self.root.rchild.lchild = Node('X')


##########################
bt = BinaryTree()

bt.create_tree()

bt.display()
print()

print("Preorder : ")
bt.preorder()
print("")

print("Inorder : ")
bt.inorder()
print()

print("Postorder : ")
bt.postorder()
print()

print("Level order : ")
bt.level_order()
print()

print("Height of tree is ", bt.height())
Computer Science Tutorials Data Structures Tutorials computer scienceData Structure

Post navigation

Previous post
Next post
  • How AI Is Revolutionizing Personalized Learning in Schools
  • GTA 5 is the Game of the Year for 2024 and 2025
  • Hackerrank Day 5 loops 30 days of code solution
  • Hackerrank Day 6 Lets Review 30 days of code solution
  • Hackerrank Day 14 scope 30 days of code solution
©2025 Programming101 | WordPress Theme by SuperbThemes