Skip to content
Programmingoneonone
Programmingoneonone

Learn everything about programming

  • Home
  • CS Subjects
    • Internet of Things (IoT)
    • Digital Communication
    • Human Values
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programmingoneonone
Programmingoneonone

Learn everything about programming

HackerEarth Length of arithmetic progressions solution

YASH PAL, 31 July 2024
In this HackerEarth Length of arithmetic progressions problem solution, You are given an integer array A of size N. You are also given Q queries. In each query, you are given three integers L, R, and D respectively.
You are required to determine the length of the largest contiguous segment in the indices range [L, R] of A that forms an arithmetic progression with a common difference of D.
HackerEarth Length of arithmetic progressions problem solution

HackerEarth Length of arithmetic progressions problem solution.

#include <bits/stdc++.h>
using namespace std;
#define int long long
typedef int ll;
typedef long double ld;
const ll N = 400005;
char en = 'n';
ll inf = 1e16;
ll mod = 1e9 + 7;
ll power(ll x, ll n, ll mod) {
ll res = 1;
x %= mod;
while (n) {
if (n & 1)
res = (res * x) % mod;
x = (x * x) % mod;
n >>= 1;
}
return res;
}

struct data {
// Use required attributes
int sum, left, right;
int len;
// Default Values
data() : sum(0), left(0), right(0), len(1){};
};

struct SegTree {
int N;
vector<data> st;
vector<bool> cLazy;
vector<int> lazy;

void init(int n) {
N = n;
st.resize(4 * N + 5);
cLazy.assign(4 * N + 5, false);
lazy.assign(4 * N + 5, 0);
}

// Write reqd merge functions
void merge(data &cur, data &l, data &r) {
cur.sum = max(l.sum, r.sum);
cur.sum = max(cur.sum, l.right + r.left);

cur.left = max(l.left, ((l.sum == l.len) ? (l.sum + r.left) : 0ll));
cur.right = max(r.right, ((r.sum == r.len) ? (r.sum + l.right) : 0ll));
cur.len = l.len + r.len;
}

// Handle lazy propagation appriopriately
void propagate(int node, int L, int R) {
if (L != R) {
cLazy[node * 2] = 1;
cLazy[node * 2 + 1] = 1;
lazy[node * 2] = lazy[node];
lazy[node * 2 + 1] = lazy[node];
}
st[node].sum = st[node].left = st[node].right = lazy[node];

cLazy[node] = 0;
lazy[node] = 0;
}

void build(int node, int L, int R) {
if (L == R) {
// st[node].mn = 1e9;
return;
}
int M = (L + R) / 2;
build(node * 2, L, M);
build(node * 2 + 1, M + 1, R);
merge(st[node], st[node * 2], st[node * 2 + 1]);
}

data Query(int node, int L, int R, int i, int j) {
if (cLazy[node])
propagate(node, L, R);
if (j < L || i > R)
return data();
if (i <= L && R <= j)
return st[node];
int M = (L + R) / 2;
data left = Query(node * 2, L, M, i, j);
data right = Query(node * 2 + 1, M + 1, R, i, j);
data cur;
merge(cur, left, right);
return cur;
}

data pQuery(int node, int L, int R, int pos) {
if (cLazy[node])
propagate(node, L, R);
if (L == R)
return st[node];
int M = (L + R) / 2;
if (pos <= M)
return pQuery(node * 2, L, M, pos);
else
return pQuery(node * 2 + 1, M + 1, R, pos);
}

void Update(int node, int L, int R, int i, int j, int val) {
if (cLazy[node])
propagate(node, L, R);
if (j < L || i > R)
return;
if (i <= L && R <= j) {
cLazy[node] = 1;
lazy[node] = val;
propagate(node, L, R);
return;
}
int M = (L + R) / 2;
Update(node * 2, L, M, i, j, val);
Update(node * 2 + 1, M + 1, R, i, j, val);
merge(st[node], st[node * 2], st[node * 2 + 1]);
}

void pUpdate(int node, int L, int R, int pos, int val) {
if (cLazy[node])
propagate(node, L, R);
if (L == R) {
cLazy[node] = 1;
lazy[node] = val;
propagate(node, L, R);
return;
}
int M = (L + R) / 2;
if (pos <= M)
pUpdate(node * 2, L, M, pos, val);
else
pUpdate(node * 2 + 1, M + 1, R, pos, val);
merge(st[node], st[node * 2], st[node * 2 + 1]);
}

data query(int pos) { return pQuery(1, 1, N, pos); }

data query(int l, int r) {
if (l > r)
return data();
return Query(1, 1, N, l, r);
}

void update(int pos, int val) { pUpdate(1, 1, N, pos, val); }

void update(int l, int r, int val) { Update(1, 1, N, l, r, val); }
};

// Problem 1 (Max Query - Point Update with Coordinate Compression):
// http://codeforces.com/gym/100733/problem/F Solution 1:
// http://codeforces.com/gym/100733/submission/41643795

// Problem 2 (Min Query - Offline processing):
// https://codeforces.com/problemset/problem/522/D Solution 2:
// https://codeforces.com/contest/522/submission/45493164

struct Query {
ll L, R;
ll D;
ll indx;
Query() {}
Query(ll L, ll R, ll D, ll indx) : L(L), R(R), D(D), indx(indx) {}
};
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);

ll n, q;
cin >> n >> q;

ll A[n + 5];

for (int i = 1; i <= n; i++) {
cin >> A[i];
}

ll diff[n + 5];

ll offset = 200000;

vector<ll> indicesList[400005];

for (ll i = 1; i < n; i++) {
diff[i] = A[i + 1] - A[i];
indicesList[offset + diff[i]].push_back(i);
}

vector<Query> queryEvent[400005];

for (ll i = 1; i <= q; i++) {
ll L, R, D;
cin >> L >> R >> D;

queryEvent[D + offset].push_back(Query(L, R, D, i));
}

ll ans[q + 5];

SegTree obj;
obj.init(n - 1);

for (ll i = 0; i <= 400000; i++) {
for (int indx : indicesList[i]) {
obj.update(indx, 1);
}
for (Query &query : queryEvent[i]) {
int indx = query.indx;
ans[indx] = obj.query(query.L, query.R - 1).sum + 1;
}
for (int indx : indicesList[i]) {
obj.update(indx, 0);
}
}

for (int i = 1; i <= q; i++)
cout << ans[i] << en;

return 0;
}
coding problems solutions

Post navigation

Previous post
Next post

Pages

  • About US
  • Contact US
  • Privacy Policy

Follow US

  • YouTube
  • LinkedIn
  • Facebook
  • Pinterest
  • Instagram
©2025 Programmingoneonone | WordPress Theme by SuperbThemes