In this HackerEarth Equal subarrays problem solution You are given an array of N non-negative integers [A1,A2,A3,…,AN], and a non-negative integer K. A subarray is an array composed of a contiguous block of original array elements. You can perform the following operation on a subarray:
Increase each element of this subarray by a non-negative number such that the total sum of all the increments does not exceed K. You must make all the elements of this subarray equal.
Determine the maximum length of a subarray in which all the elements can be made equal by performing the mentioned operation.
HackerEarth Equal subarrays problem solution.
#include "bits/stdc++.h"
using namespace std;
int segment_tree[1000000];
long long int A[100005];
int build(int start, int end, int node)
{
if(start == end)
{
segment_tree[node] = A[start];
}
else
{
int mid = (start + end) / 2;
segment_tree[node] = max(build(start, mid, 2*node + 1), build(mid+1, end, 2*node+2));
}
return segment_tree[node];
}
int query(int start, int end, int l, int r, int node)
{
if(start > r || end < l) return -1;
if(start >= l && end <= r) return segment_tree[node];
int mid = (start + end) / 2;
return max(query(start, mid, l, r, 2*node+1), query(mid+1, end, l, r, 2*node+2));
}
int main(){
int N; cin>>N;
int K; cin>>K;
for(int i=0; i<N; i++)
{
cin>>A[i];
}
long long int pref[N+1];
pref[0] = 0;
for(int i=0; i<N; i++)
{
pref[i+1] = pref[i] + A[i];
}
build(0, N-1, 0);
int ans = 1;
for(int i=0; i<N; i++)
{
int start = i, end = N-1, mid, max_index = i;
while(start <= end)
{
mid = (start + end) / 2;
long long int max_element = query(0, N-1, i, mid, 0);
long long int expected_sum = (mid - i + 1) * max_element;
long long int actual_sum = pref[mid + 1] - pref[i];
if(expected_sum - actual_sum <= K)
{
start = mid + 1;
max_index = max(max_index, mid);
}
else
{
end = mid - 1;
}
}
ans = max(ans, max_index - i + 1);
}
cout<<ans;
return 0;
}
Second solution
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10, maxlg = 18;
int n, k, a[maxn], mx[maxlg][maxn];
ll par[maxn];
int get(int l, int r) {
if (r <= l) return 0;
int lg = 31 - __builtin_clz(r - l);
return max(mx[lg][l], mx[lg][r - (1 << lg)]);
}
int main(){
cin >> n >> k;
for (int i = 0; i < n; ++i) {
cin >> a[i];
mx[0][i] = a[i];
par[i + 1] = par[i] + a[i];
}
for (int i = 1; i < maxlg; ++i)
for (int j = 0; j < n; ++j) {
mx[i][j] = mx[i - 1][j];
if (j + (1 << (i - 1)) < n)
mx[i][j] = max(mx[i][j], mx[i - 1][j + (1 << (i - 1))]);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
int b = i, e = n, mid;
while (e - b > 1) {
mid = (b + e) >> 1;
ll val = get(i, mid + 1) * ll(mid - i + 1) - (par[mid + 1] - par[i]);
if (val <= k)
b = mid;
else
e = mid;
}
ans = max(ans, e - i);
}
cout << ans << 'n';
return 0;
}