HackerEarth Reversing elements problem solution YASH PAL, 31 July 2024 In this HackerEarth Reversing elements problem solution, You are given an array A of size N and Q queries. For each query, you are given two indices of the array L and R. The subarray generated from L to R is reversed. Your task is to determine the maximum sum of the subarrays. HackerEarth Reversing elements problem solution. #include <bits/stdc++.h>#include <tr1/unordered_map>using namespace std;using namespace std::tr1;#define opt ios_base::sync_with_stdio(0)#define lli long long int#define ulli unsigned long long int#define I int#define S string#define D double#define rep(i,a,b) for(i=a;i<b;i++)#define repr(i,a,b) for(i=a;i>b;i--)#define in(n) scanf("%lld",&n)#define in2(a,b) scanf("%lld %lld",&a,&b)#define in3(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)#define out(n) printf("%lldn",n)#define inu(a) scanf("%lld",&a)#define outu(a) printf("%llu",a)#define ins(s) scanf("%s",&s)#define outs(s) printf("%s",s)#define mod 1000000007#define inf 100000000000000typedef long long ll;typedef pair<lli,lli> plli;typedef vector<lli> vlli;typedef vector<ulli> vulli;typedef vector<ll> vll;typedef vector<string> vs;typedef vector<plli> vplli;#define MM(a,x) memset(a,x,sizeof(a));#define ALL(x) (x).begin(), (x).end()#define P(x) cerr<<"{"#x<<" = "<<(x)<<"}"<<endl;#define P2(x,y) cerr<<"{"#x" = "<<(x)<<", "#y" = "<<(y)<<"}"<<endl;#define P3(x,y,z) cerr<<"{"#x" = "<<(x)<<", "#y" = "<<(y)<<", "#z" = "<<(z)<<"}"<<endl;#define P4(x,y,z,w)cerr<<"{"#x" = "<<(x)<<", "#y" = "<<(y)<<", "#z" = "<<(z)<<", "#w" = "<<(w)<<"}"<<endl;#define PP(x,i) cerr<<"{"#x"["<<i<<"] = "<<x[i]<<"}"<<endl;#define TM(a,b) cerr<<"{"#a" -> "#b": "<<1000*(b-a)/CLOCKS_PER_SEC<<"ms}n";#define UN(v) sort(ALL(v)), v.resize(unique(ALL(v))-v.begin())#define mp make_pair#define pb push_back#define f first#define s second#define sz() size()#define nl cout<<"n"#define MX1 100005#define MX2 1000005#define bs binary_search#define lb lower_bound#define ub upper_boundlli dx[]={0,0,-1,1,-1,-1,1,1};lli dy[]={1,-1,0,0,1,-1,-1,1};lli power(lli a,lli b) { lli value; if(b==0) { return 1; } else if(b%2==0) { value=power(a,b/2)%mod; return(value*value)%mod; } else { value=power(a,b/2)%mod; return ((a*value)%mod*(value))%mod; }}struct node{ lli sum,prefix,suffix,ans;};node tree[400005];lli a[100004],max_start_here[100005],max_end_here[100005],max_pre[100005],max_suf[100005],b[100005];node combine(node n1,node n2){ node temp; if(n1.sum==-inf) { return n2; } if(n2.sum==-inf) { return n1; } temp.sum=n1.sum+n2.sum; temp.prefix=max(n1.prefix,n1.sum+n2.prefix); temp.suffix=max(n2.suffix,n2.sum+n1.suffix); temp.ans=max(n1.ans,max(n2.ans,n1.suffix+n2.prefix)); return temp;}void build(lli n,lli s,lli e){ if(s==e) { tree[n].prefix=a[s]; tree[n].sum=a[s]; tree[n].suffix=a[s]; tree[n].ans=a[s]; } else { lli mid=(s+e)/2; build(2*n,s,mid); build(2*n+1,mid+1,e); tree[n]=combine(tree[2*n],tree[2*n+1]); }}node query(lli n,lli s,lli e,lli l,lli r){ if(s>e or e<l or s>r) { return {-inf,-inf,-inf,-inf}; } if(s>=l and e<=r) { return tree[n]; } lli mid=(s+e)/2; node n1=query(2*n,s,mid,l,r); node n2=query(2*n+1,mid+1,e,l,r); node ne=combine(n1,n2); return ne;}int main(){ #ifndef ONLINE_JUDGE #endif*/ opt; lli n,i,q; cin>>n>>q; rep(i,1,1+n) { cin>>a[i]; b[i]=a[i]; } rep(i,1,1+n) { b[i]=b[i-1]+a[i]; } max_end_here[1]=a[1]; rep(i,2,1+n) { max_end_here[i]=max(a[i],max_end_here[i-1]+a[i]); } max_start_here[n]=a[n]; repr(i,n-1,0) { max_start_here[i]=max(a[i],a[i]+max_start_here[i+1]); } max_pre[1]=max_end_here[1]; rep(i,2,1+n) { max_pre[i]=max(max_pre[i-1],max_end_here[i]); } max_suf[n]=max_start_here[n]; repr(i,n-1,0) { max_suf[i]=max(max_suf[i+1],max_start_here[i]); } build(1,1,n); while(q--) { lli l,r; cin>>l>>r; node n1=query(1,1,n,l,r); if(l==1 and r==n) { cout<<n1.ans<<endl; } else if(l==1) { lli ans=n1.ans; ans=max(ans,n1.prefix+max_start_here[r+1]); ans=max(ans,max_suf[r+1]); cout<<ans<<endl; } else if(r==n) { lli ans=n1.ans; ans=max(ans,n1.suffix+max_end_here[l-1]); ans=max(ans,max_pre[l-1]); cout<<ans<<endl; } else { lli ans=n1.ans; ans=max(ans,n1.prefix+max_start_here[r+1]); ans=max(ans,n1.suffix+max_end_here[l-1]); ans=max(ans,n1.sum+max(0LL,max_start_here[r+1])+max(0LL,max_end_here[l-1])); ans=max(ans,max_pre[l-1]); ans=max(ans,max_suf[r+1]); cout<<ans<<endl; } }} Second solution #include <bits/stdc++.h>using namespace std; #define ms(s, n) memset(s, n, sizeof(s))#define FOR(i, a, b) for (int i = (a); i < (b); ++i)#define FORd(i, a, b) for (int i = (a) - 1; i >= (b); --i)#define FORall(it, a) for (__typeof((a).begin()) it = (a).begin(); it != (a).end(); it++)#define sz(a) int((a).size())#define present(t, x) (t.find(x) != t.end())#define all(a) (a).begin(), (a).end()#define uni(a) (a).erase(unique(all(a)), (a).end())#define pb push_back#define pf push_front#define mp make_pair#define fi first#define se second#define prec(n) fixed<<setprecision(n)#define bit(n, i) (((n) >> (i)) & 1)#define bitcount(n) __builtin_popcountll(n)typedef long long ll;typedef unsigned long long ull;typedef long double ld;typedef pair<int, int> pi;typedef vector<int> vi;typedef vector<pi> vii;const int MOD = (int) 1e9 + 7;const int FFTMOD = 119 << 23 | 1;const int INF = (int) 1e9 + 23111992;const ll LINF = (ll) 1e18 + 23111992;const ld PI = acos((ld) -1);const ld EPS = 1e-9;inline ll gcd(ll a, ll b) {ll r; while (b) {r = a % b; a = b; b = r;} return a;}inline ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}inline ll fpow(ll n, ll k, int p = MOD) {ll r = 1; for (; k; k >>= 1) {if (k & 1) r = r * n % p; n = n * n % p;} return r;}template<class T> inline int chkmin(T& a, const T& val) {return val < a ? a = val, 1 : 0;}template<class T> inline int chkmax(T& a, const T& val) {return a < val ? a = val, 1 : 0;}inline ull isqrt(ull k) {ull r = sqrt(k) + 1; while (r * r > k) r--; return r;}inline ll icbrt(ll k) {ll r = cbrt(k) + 1; while (r * r * r > k) r--; return r;}inline void addmod(int& a, int val, int p = MOD) {if ((a = (a + val)) >= p) a -= p;}inline void submod(int& a, int val, int p = MOD) {if ((a = (a - val)) < 0) a += p;}inline int mult(int a, int b, int p = MOD) {return (ll) a * b % p;}inline int inv(int a, int p = MOD) {return fpow(a, p - 2, p);}inline int sign(ld x) {return x < -EPS ? -1 : x > +EPS;}inline int sign(ld x, ld y) {return sign(x - y);}#define db(x) cerr << #x << " = " << (x) << " ";#define endln cerr << "n";mt19937 mt(chrono::high_resolution_clock::now().time_since_epoch().count());inline int myrand() {return abs((int) mt());} struct node_t { long long sum, prf, suf, ans; node_t() : ans(-LINF) {} node_t(int val) : sum(val), prf(val), suf(val), ans(val) {} friend node_t operator + (const node_t& a, const node_t& b) { if (a.ans == -LINF) return b; if (b.ans == -LINF) return a; node_t res; res.sum = a.sum + b.sum; res.prf = max(a.prf, a.sum + b.prf); res.suf = max(b.suf, a.suf + b.sum); res.ans = max(a.suf + b.prf, max(a.ans, b.ans)); return res; }}; const int maxn = 1e5 + 5;int n, q;node_t st[maxn << 2]; void upd(int p, int i, int L, int R, int val) { if (i < L || R < i) return; if (L == R) { st[p] = node_t(val); return; } upd(p << 1, i, L, L + R >> 1, val); upd(p << 1 | 1, i, (L + R >> 1) + 1, R, val); st[p] = st[p << 1] + st[p << 1 | 1];}node_t query(int p, int l, int r, int L, int R) { if (r < L || R < l) return node_t(); if (l <= L && R <= r) return st[p]; return query(p << 1, l, r, L, L + R >> 1) + query(p << 1 | 1, l, r, (L + R >> 1) + 1, R);} void chemthan() { cin >> n >> q; assert(1 <= n && n <= 1e5); assert(1 <= q && q <= 1e5); FOR(i, 0, n) { int x; cin >> x; assert(-1e6 <= x && x <= +1e6); upd(1, i, 0, n - 1, x); } while (q--) { int l, r; cin >> l >> r; l--, r--; assert(0 <= l && l <= r && r < n); node_t res = query(1, l, r, 0, n - 1); swap(res.prf, res.suf); res = query(1, 0, l - 1, 0, n - 1) + res + query(1, r + 1, n - 1, 0, n - 1); cout << res.ans << "n"; }} int main(int argc, char* argv[]) { ios_base::sync_with_stdio(0), cin.tie(0); if (argc > 1) { assert(freopen(argv[1], "r", stdin)); } if (argc > 2) { assert(freopen(argv[2], "wb", stdout)); } chemthan(); cerr << "nTime elapsed: " << 1000 * clock() / CLOCKS_PER_SEC << "msn"; return 0;} coding problems