HackerEarth Do you order queries? problem solution YASH PAL, 31 July 2024 In this HackerEarth Do you order queries problem solution You are given n ($1$ $le$ $n$ $le$ $300000$) queries. Each query is one of $3$ types: add pair ($a$, $b$) to the set. ($-10^9$ $le$ $a, b$ $le$ $10^9$) remove a pair added in query $index$ (All queries are numbered with integers from $1$ to $n$). For a given integer $A$ find the maximal value $a·A + b$ over all pairs ($a$, $b$) from the set. ($-10^9$ $le$ $A$ $le$ $10^9$). It is guaranteed that the set of pair will not be *empty*. HackerEarth Do you order queries? problem solution. # include <bits/stdc++.h># include <ext/pb_ds/assoc_container.hpp># include <ext/pb_ds/tree_policy.hpp>using namespace __gnu_pbds;using namespace std; template<typename T> using ordered_set = tree <T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;#define _USE_MATH_DEFINES_#define ll long long#define ld long double#define Accepted 0#define pb push_back#define mp make_pair#define sz(x) (int)(x.size())#define every(x) x.begin(),x.end()#define F first#define S second#define lb lower_bound#define ub upper_bound#define For(i,x,y) for (ll i = x; i <= y; i ++) #define FOr(i,x,y) for (ll i = x; i >= y; i --)#define SpeedForce ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0)inline void Input_Output () {}const double eps = 0.000001;const ld pi = acos(-1);const int maxn = 1e7 + 9;const int mod = 1e9 + 7;const ll MOD = 1e18 + 9;const ll INF = 3e18 + 123;const int inf = 2e9 + 11;const int mxn = 6e7 + 1;const int N = 5e5 + 123; const int M = 22;const int pri = 997;const int Magic = 2101;const int dx[] = {-1, 0, 1, 0};const int dy[] = {0, -1, 0, 1};mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int n, m, k;int op[N];int a[N], b[N];using pt = pair<int, int>;pt bad = {-inf, -inf};pt t[mxn];int rt[N*4];int L[mxn];int R[mxn];int Ptr;int arr[N];int ptr;ll f (pt a, int x) { if (a == bad) return -INF; return a.first * (ll)x + a.second;}void upd (int &v, int _v, pt nw, int tl = 1, int tr = ptr) { v = ++Ptr; if(!_v) { t[v] = nw; return; } t[v] = t[_v]; if (tl == tr) { if (f(t[v], arr[tl]) < f(nw, arr[tl])) t[v] = nw; return; } int tm = (tl + tr) >> 1; if (t[v].F > nw.F) swap(t[v], nw); if (f(t[v], arr[tm+1]) < f(nw, arr[tm+1])) { swap(t[v], nw); upd (L[v], L[_v], nw, tl, tm); R[v] = R[_v]; } else { upd (R[v], R[_v], nw, tm+1, tr); L[v] = L[_v]; } }ll get (int x, int v, int tl = 1, int tr = ptr) { int tm = (tl + tr) >> 1; if (!v) return -INF; if (t[v] == bad) return -INF; if (tl == tr) { return f(t[v], x); } if (x <= arr[tm]) { return max(f(t[v], x), get(x, L[v], tl, tm)); } return max(f(t[v], x), get(x, R[v], tm+1, tr));}namespace DC { vector < int > q[N * 4]; void add (int l, int r, int id, int v = 1, int tl = 1, int tr = n) { if (l > tr || tl > r) return; if (tl >= l && tr<= r) { q[v].pb(id); return; } int tm = (tl + tr) >> 1; add(l, r, id, v<<1, tl, tm); add(l, r, id, v<<1|1, tm+1, tr); } void go (int v = 1, int tl = 1, int tr = n) { rt[v] = rt[v/2]; int tm = (tl+tr)>>1; //sort(every(q[v]), [&] (int x, int y) { return mp(-a[x], -b[x]) < mp(-a[y], -b[y]); }); for (auto it : q[v]) { //cout << "+ " << it << 'n'; int old = rt[v]; upd (rt[v], old, {a[it], b[it]}); } q[v].clear(); q[v].shrink_to_fit(); if (tl == tr) { if(op[tl] == 3) { // cout << "solving: " << tl << 'n'; ll res = get(a[tl], rt[v]); assert(res != -INF); cout << res << 'n'; } return; } go(v<<1, tl, tm); go(v<<1 | 1, tm+1, tr); } inline void solve () { ptr = 0; For (i, 1, n) if (op[i] != 2) { arr[++ptr] = a[i]; } sort(arr + 1, arr + ptr + 1); ptr = unique(arr + 1, arr + ptr + 1) - arr - 1; Ptr = 0; go(); }}bool was[N];int main () { SpeedForce; cin >> n; for (int i = 1; i <= n; ++i) { cin >> op[i] >> a[i]; if (op[i] == 1) cin >> b[i]; else if (op[i] == 2) { DC::add(a[i] + 1, i - 1, a[i]); was[a[i]] = 1; } } For (i, 1, n) if (op[i] == 1) { if(!was[i]) { DC::add(i + 1, n, i); } } DC:: solve(); return Accepted;} coding problems