In this HackerRank XOR Subsequences problem solution, we have given an array A and we need to find the XOR sum of every subsequence of A and determine the frequency at which each number occurs. then print the number and its respective frequency as two space-separated values on a single line.
Problem solution in Python.
#!/bin/python3 import os import sys from operator import xor from itertools import accumulate from collections import Counter POW2 = 2**16 # # Complete the xorSubsequence function below. # xorSubsequence = lambda a: main(a) # from wikipedia def fwht(a) -> None: h = 1 while h < len(a): for i in range(0, len(a), h * 2): for j in range(i, i + h): x = a[j] y = a[j + h] a[j] = x + y a[j + h] = x - y h *= 2 def main(seq): histogram = Counter(accumulate([0]+seq,xor)) histogram = [histogram[value] for value in range(POW2)] fwht(histogram) histogram = [x*x for x in histogram] fwht(histogram) histogram = [y//POW2 for y in histogram] histogram[0] -= len(seq)+1 # self combos (diagonal in table) histogram =[y//2 for y in histogram] # don't count things twice max_freq = max(histogram) return next((i,freq) for i,freq in enumerate(histogram) if freq ==max_freq) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') a_count = int(input()) a = [] for _ in range(a_count): a_item = int(input()) a.append(a_item) result = xorSubsequence(a) fptr.write(' '.join(map(str, result))) fptr.write('n') fptr.close()
Problem solution in Java.
import java.io.*; import java.util.*; public class Solution { // TODO XOR Subsequences static final int LOGM = 16; static final int M = 1 << LOGM; static void walsh_dit2(long[] c) { for (int m = 2; m <= M; m *= 2) { int mh = m / 2; for (int i = 0; i < M; i += m) { for (int j = 0; j < mh; j++) { long x = c[i + j], y = c[i + j + mh]; c[i + j] = x + y; c[i + j + mh] = x - y; } } } } static void arith(long[] c) { for (int m = 2; m <= M; m *= 2) { int mh = m / 2; for (int i = 0; i < M; i += m) for (int j = 0; j < mh; j++) { long x = c[i + j]; long y = c[i + j + mh]; c[i + j] = x; c[i + j + mh] = x + y; } } } static void arith_minus(long[] c) { for (int m = 2; m <= M; m *= 2) { int mh = m / 2; for (int i = 0; i < M; i += m) for (int j = 0; j < mh; j++) { long x = c[i + j]; long y = c[i + j + mh]; c[i + j] = x; c[i + j + mh] = y - x; } } } static void xorConvolution(long[] c) { walsh_dit2(c); for (int i = 0; i < M; i++) { c[i] *= c[i]; } walsh_dit2(c); for (int i = 0; i < M; i++) { c[i] /= M; } } static void orConvolution(long[] c) { arith(c); for (int i = 0; i < M; i++) { c[i] *= c[i]; } arith_minus(c); } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH"))); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int acc = 0; long[] c = new long[M]; c[0]++; for (int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); acc ^= Integer.parseInt(st.nextToken()); c[acc]++; } xorConvolution(c); int pos = 0; long y = 0; for (int i = 1; i < M; i++) { if (c[i] > y) { y = c[i]; pos = i; } } y /= 2; bw.write("" + pos + " " + y); bw.newLine(); bw.close(); br.close(); } }
Problem solution in C++.
#include <iostream> #include <cstdio> #include <cmath> #include <queue> #include <cstring> #include <algorithm> #include <stack> #include <cassert> #include <map> #include <set> #include <deque> #include <complex> using namespace std; typedef long long ll; typedef unsigned long long ull; const long long MOD = 1e9 + 7; long long a[1<<16]; long long INV2; long long modpow(long long a, long long b) { if(b == 0) return 1; if(b == 1) return a; if(b&1LL) return (a * modpow(a,b-1LL)) % MOD; long long k = modpow(a,b/2LL); return (k*k)%MOD; } void transform(int x, int y) { if(x == y - 1) { return; } int l2 = (y-x)/2; int z = x + l2; transform(x,z); transform(z,y); for(int i = x;i<z;i++) { int x1 = a[i]; int x2 = a[i+l2]; a[i] = (x1 - x2 + MOD) % MOD; a[i+l2] = (x1 + x2) % MOD; } } void untransform(int x, int y) { if(x == y - 1) { return; } int l2 = (y-x)/2; int z = x + l2; for(int i = x;i<z;i++) { long long y1 = a[i]; long long y2 = a[i+l2]; a[i] = (int) (((y1 + y2) * INV2) % MOD); a[i+l2] = (int) (((y2 - y1 + MOD) * INV2) % MOD); } untransform(x,z); untransform(z,y); } int n, v, t; int arr[100005]; int main() { INV2 = modpow(2, MOD - 2LL); t = 1<<16; scanf("%d", &n); assert(n > 0 && n <= 100000); for(int i = 1;i<=n;i++) { scanf("%d", &arr[i]); assert(arr[i] >= 0 && arr[i] < 65536); arr[i] ^= arr[i-1]; ++a[ arr[i] ]; } transform(0,t); for(int i = 0;i<t;i++) { a[i] = (a[i] * a[i]) % MOD; } untransform(0,t); a[0] -= (long long) n; for(int i = 0;i<t;i++) { a[i] /= 2LL; } for(int i = 1;i<=n;i++) { ++a[ arr[i] ]; } int sol = 0; long long maxx = 0; for(int i = 0;i<t;i++) { if(a[i] > maxx) { maxx = a[i]; sol = i; } } printf("%d %lldn", sol, maxx); return 0; }
Problem solution in C.
#include<stdio.h> int A[100000], Fre1[65536], Fre2[65536], Fre3[65536], B[100001]; int main() { unsigned N, i, max, Y, X, j, k; scanf("%dn", &N); for( i = 0 ; i < 65536 ; i++ ) { Fre1[i] = Fre2[i] = Fre3[i] = 0; } X = 0; B[0] = 0; for( i = 0 ; i < N ; i++ ) { scanf("%dn", &A[i]); X = A[i] ^ X; B[i+1] = X; } B[N] = X; for( i = 0 ; i <= N ; i++ ) { Fre1[B[i]]++; } for( i = 0 ; i < 65536 ; i++ ) { if(Fre1[i]) { for( j = i ; j < 65536 ; j++ ) { Fre3[i^j] += Fre1[i] * Fre1[j]; } } } Fre3[0] -= N; Fre3[0] = Fre3[0] / 2; max = 0; Y = 65536; for( i = 0 ; i < 65536 ; i++ ) { if( Fre3[i] > max ) { Y = i; max = Fre3[i]; } if( Fre3[i] == max ) { if( i < Y ) { Y = i; max = Fre3[i]; } } } printf("%d %d n", Y, max); return 0; }