Skip to content
Programmingoneonone
Programmingoneonone
  • CS Subjects
    • Internet of Things (IoT)
    • Digital Communication
    • Human Values
    • Cybersecurity
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programmingoneonone
Programmingoneonone

HackerRank The Longest Common Subsequence problem solution

YASH PAL, 31 July 202425 January 2026

In this HackerRank The Longest Common Subsequence problem solution A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. Longest common subsequence (LCS) of 2 sequences is a subsequence, with maximal length, which is common to both the sequences.

You have given two sequences of integers, A = [a[1], … , a[n]] and B = [b[1],….,b[m]], find the longest common subsequence and print it as a line of space-separated integers. If there are multiple common subsequences with the same maximum length, print any one of them.

HackerRank The Longest Common Subsequence problem solution

HackerRank The Longest Common Subsequence problem solution in Python.

#!/bin/python3

import sys   

# parse input
n,m = input().strip().split(' ')
n = int(n)
m = int(m)
A = [int(x) for x in input().strip().split(' ')]
B = [int(x) for x in input().strip().split(' ')]

# initialize table for DP
table = dict()
for i in range(0,n+1):
    loc = tuple([i,0])
    table[loc] = list()

for j in range(0,m+1):
    loc = tuple([0,j])
    table[loc] = list()

# populate table
for i in range(1,n+1):
    for j in range(1,m+1):
        a = A[i-1]
        b = B[j-1]
        if a == b:
            seq = table[tuple([i-1,j-1])].copy()
            seq.append(a)
            table[tuple([i,j])] = seq
        else:
            ti = table[tuple([i-1,j])].copy()
            tj = table[tuple([i,j-1])].copy()
            
            if len(ti) > len(tj):
                table[tuple([i,j])] = ti.copy()
            else:
                table[tuple([i,j])] = tj.copy()
 
# output result
out = table[tuple([n,m])]
out = ' '.join(str(x) for x in out)
print(out)

The Longest Common Subsequence problem solution in Java.

import java.io.*;
import java.util.*;

public class Solution {

    public static void main(String[] args) {
        /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
        
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[] a = new int[n];
        for (int i = 0; i < n; ++i) {
            a[i] = scanner.nextInt();
        }
        int[] b = new int[m];        
        for (int i = 0; i < m; ++i) {
            b[i] = scanner.nextInt();
        }
        int[][] opt = new int[n + 1][m + 1];
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                if (a[i - 1] == b[j - 1]) {
                    opt[i][j] = opt[i - 1][j - 1] + 1;
                } else {
                    opt[i][j] = Math.max(opt[i][j - 1], opt[i - 1][j]);
                }
            }
        }
        //System.out.println(opt[n][m]);
        int i = n, j = m;
        Stack<Integer> stack = new Stack<>();
        while (i > 0 && j > 0) {
            if (a[i - 1] == b[j - 1]) {
                stack.push(a[i - 1]);
                i -= 1;
                j -= 1;
            } else if (opt[i][j - 1] >= opt[i - 1][j]) {
                j -= 1;
            } else if (opt[i][j - 1] < opt[i - 1][j]) {
                i -= 1;
            }
        }
        StringBuilder sb = new StringBuilder();
        while (!stack.isEmpty()) {
            sb.append(stack.pop() + " ");
        }
        System.out.println(sb.toString().trim());
    }
}

Problem solution in C++.

#include <ios>
#include <iostream>

int dp[105][105] = {};
int parenti[105][105] = {};
int parentj[105][105] = {};
int arr1[105] = {};
int arr2[105] = {};
int n, m;
bool first = true;

int lcs(int i, int j)
{
    if (i == -1) return 0;
    else if (j == -1) return 0;
    else if (dp[i][j] == -1)
    {
        if (arr1[i] == arr2[j])
        {
            dp[i][j] = lcs(i-1, j-1)+1;
            parenti[i][j] = i-1;
            parentj[i][j] = j-1;
        }
        else
        {
            if (lcs(i-1, j) > lcs(i, j-1))
            {
                dp[i][j] = lcs(i-1, j);
                parenti[i][j] = i-1;
                parentj[i][j] = j;
            }
            else
            {
                dp[i][j] = lcs(i, j-1);
                parenti[i][j] = i;
                parentj[i][j] = j-1;
            }
        }
    }
    return dp[i][j];
}

void print(int i, int j)
{
    if (i != -1 && j != -1)
    {
        print(parenti[i][j], parentj[i][j]);
        if (arr1[i] == arr2[j])
        {
            if (first) first = false;
            else std::cout << " ";
            std::cout << arr1[i];
        }
    }
}

int main()
{
    std::ios_base::sync_with_stdio(false);
    for (int i = 0; i < 105; i++)
    {
        for (int j = 0; j < 105; j++)
        {
            dp[i][j] = -1;
            parenti[i][j] = -1;
            parentj[i][j] = -1;
        }
    }
    std::cin >> n >> m;
    for (int i = 0; i < n; i++) std::cin >> arr1[i];
    for (int i = 0; i < m; i++) std::cin >> arr2[i];
    lcs(n-1, m-1);
    print(n-1, m-1);
}

Problem solution in C.

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>

int* longestCommonSubsequence(int a_size, int* a, int b_size, int* b, int *result_size) {
    int memo[a_size + 1][b_size + 1];

    // initialize table.
    for (int i = 0; i <= a_size; i++)
        memo[i][0] = 0;

    for (int j = 1; j <= b_size; j++)
        memo[0][j] = 0;

    // Find the length of the longest substring
    for (int i = 1, r = 0; i <= a_size; i++, r++)
        for (int j = 1, c = 0; j <= b_size; j++, c++)
            if (a[r] == b[c])
                memo[i][j] = memo[i - 1][j - 1] + 1;
            else
                memo[i][j] = (memo[i - 1][j] > memo[i][j - 1]) ? memo[i - 1][j] : memo[i][j - 1];

    // Read the memo backwards to find the LCS
    int len = memo[a_size][b_size];
    int r = a_size;
    int c = b_size;
    int* result = (int*)malloc(sizeof(int) * len);
    while (len) {
        if (a[r-1] == b[c-1]) {
            --len;
            --r;
            --c;
            result[len] = a[r];
        }
        else if (memo[r - 1][c] == len)
            --r;
        else
            --c;
    }

    *result_size = memo[a_size][b_size];
    return result;
}

int main() {
    int n; 
    int m; 
    scanf("%i %i", &n, &m);
    int *a = malloc(sizeof(int) * n);
    for (int a_i = 0; a_i < n; a_i++) {
       scanf("%i",&a[a_i]);
    }
    int *b = malloc(sizeof(int) * m);
    for (int b_i = 0; b_i < m; b_i++) {
       scanf("%i",&b[b_i]);
    }
    int result_size;
    int* result = longestCommonSubsequence(n, a, m, b, &result_size);
    for(int result_i = 0; result_i < result_size; result_i++) {
        if(result_i) {
            printf(" ");
        }
        printf("%d", result[result_i]);
    }
    puts("");


    return 0;
}

Algorithms coding problems solutions AlgorithmsHackerRank

Post navigation

Previous post
Next post
CLOSE ADS
CLOSE ADS

Pages

  • About US
  • Contact US
  • Privacy Policy

Follow US

  • YouTube
  • LinkedIn
  • Facebook
  • Pinterest
  • Instagram
©2026 Programmingoneonone | WordPress Theme by SuperbThemes