Skip to content
Programmingoneonone
Programmingoneonone
  • CS Subjects
    • Internet of Things (IoT)
    • Digital Communication
    • Human Values
    • Cybersecurity
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programmingoneonone
Programmingoneonone

HackerRank Longest Palindromic Subsequence problem solution

YASH PAL, 31 July 202425 January 2026

In this HackerRank Longest Palindromic Subsequence problem solution, Steve loves playing with palindromes. He has a string, s, consisting of n lowercase English alphabetic characters (i.e., a through z). He wants to calculate the number of ways to insert exactly 1 lowercase character into string s such that the length of the longest palindromic subsequence of increases by at least k. Two ways are considered to be different if either of the following conditions are satisfied:

The positions of insertion are different.
The inserted characters are different.
This means there are at most 26x(n+1) different ways to insert exactly 1 character into a string of length n.

Given q queries consisting of n, k, and s, print the number of different ways of inserting exactly 1 new lowercase letter into string s such that the length of the longest palindromic subsequence of s increases by at least k.

HackerRank Longest Palindromic Subsequence problem solution

HackerRank Longest Palindromic Subsequence problem solution in Java.

import java.io.*;
import java.util.*;

public class Solution {
    static int N;
    static int K;
    static String S;
    
    static int[][] dp;
    static int[][] dpX;

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        dp = new int[3002][3002];
        dpX = new int[3002][3002];

        int T = in.nextInt();
        for(int i = 0; i < T; i ++) {
            N = in.nextInt();
            K = in.nextInt();
            S = in.next("[a-z]+");
            int result = solve();
            System.out.println(result);
        }
    }

    static int solve() {
        for (int i = 0; i < dp.length; i++) {
            Arrays.fill(dp[i], -1);
            Arrays.fill(dpX[i], -1);
        }

        int result;
        if (K == 0) {
            result = 26 * (N + 1);
        } else {
            result = 0;
            for (int i = 0; i <= N; i++) {
                int countOfExtend = countOfExtend(i);
                result += countOfExtend;
            }
            return result;
        }
        return result;
    }

    private static int countOfExtend(int at) {
        int base = count(0, N);
        if (at > 0 && at < N) {
            if (countOuter(at, at + 1) + 1 - base >= K) {
                return 26;
            }
        }
        boolean[] usedChars = new boolean[26];
        int result = 0;
        for (int i = 0; i < N; i++) {
            int ch = S.charAt(i) - 'a';
            if (!usedChars[ch]) {
                int from = Math.min(i, at);
                int to = Math.max(i, at);
                int outer;
                int inner;
                if (i < at) {
                    outer = countOuter(from - 1, to);
                    inner = count(from + 1, to);
                }
                else {
                    outer = countOuter(from - 1, to + 1);
                    inner = count(from, to);
                }
                if (inner < 0 || outer < 0) {
                    throw new IllegalStateException();
                }

                if (outer + inner + 2 - base >= K) {
                    usedChars[ch] = true;
                    result ++;
                }
            }
        }

        return result;
    }

    static int countOuter(int from, int to) {
        if (from == -1 || to >= N) {
            return 0;
        }
        else {
            int result = dpX[from][to];
            if (result >= 0) {
                return result;
            }
            int a = S.charAt(from);
            int b = S.charAt(to);
            if (a == b) {
                result = countOuter(from - 1, to + 1) + 2;
            }
            else {
                result = Math.max(countOuter(from - 1, to), countOuter(from, to + 1));
            }

            dpX[from][to] = result;
            return result;
        }
    }


    static int count(int from, int to) {
        if (from == to) {
            return 0;
        }
        else if (from + 1 == to) {
            return 1;
        }

        int result = dp[from][to];
        if (result >= 0) {
            return result;
        }

        int a = S.charAt(from);
        int b = S.charAt(to - 1);

        if (a == b) {
            result = count(from + 1, to - 1) + 2;
        }
        else {
            result = Math.max(count(from + 1, to), count(from, to - 1));
        }

        dp[from][to] = result;
        return result;
    }

    
}

Longest Palindromic Subsequence problem solution in C++.

#include <bits/stdc++.h>
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define REP(I, N) for (int I = 0; I < (N); ++I)
#define REPP(I, A, B) for (int I = (A); I < (B); ++I)
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define RS(X) scanf("%s", (X))
#define CASET int ___T, case_n = 1; scanf("%d ", &___T); while (___T-- > 0)
#define MP make_pair
#define PB push_back
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define PII pair<int,int>
#define VI vector<int>
#define VPII vector<pair<int,int> >
#define PLL pair<long long,long long>
#define VPLL vector<pair<long long,long long> >
#define F first
#define S second
typedef long long LL;
using namespace std;
const int MOD = 1e9+7;
const int SIZE = 3005;
int dp[SIZE][SIZE];
int dp2[SIZE][SIZE];
char s[SIZE];
int main(){
    CASET{
        DRII(n,K);
        RS(s+1);
        if(K>2)puts("0");
        else if(K==0){
            printf("%dn",n*26+26);
        }
        else{
            MS0(dp);
            MS0(dp2);
            REPP(i,1,n+1)dp2[i][i]=1;
            REPP(j,1,n){
                for(int k=1;k+j<=n;k++){
                    int ll=k,rr=k+j;
                    if(s[ll]==s[rr])dp2[ll][rr]=max(dp2[ll][rr],dp2[ll+1][rr-1]+2);
                    dp2[ll][rr]=max(dp2[ll][rr],dp2[ll+1][rr]);
                    dp2[ll][rr]=max(dp2[ll][rr],dp2[ll][rr-1]);
                }
            }
            int ma=0;
            for(int i=1;i<n;i++){
                for(int j=n;j>i;j--){
                    if(s[i]==s[j])dp[i][j]=dp[i-1][j+1]+2;
                    else dp[i][j]=max(dp[i-1][j],dp[i][j+1]);
                    ma=max(ma,dp[i][j]);
                }
            }
            REPP(i,1,n+1)ma=max(ma,dp[i-1][i+1]+1);
            int an=0;
            REP(i,n+1){
                int me=0;
                me=dp[i][i+1]+1;
                if(me>=ma+K){
                    an+=26;
                    continue;
                }
                bool used[26]={};
                REPP(j,1,n+1){
                    if(j<=i){
                        if(dp2[j+1][i]+dp[j-1][i+1]+2>=ma+K)used[s[j]-'a']=1;
                    }
                    else{
                        if(dp2[i+1][j-1]+dp[i][j+1]+2>=ma+K)used[s[j]-'a']=1;
                    }
                }
                REP(j,26)
                    if(used[j]){
                        an++;
                    }
            }
            printf("%dn",an);
        }
    }
    return 0;
}

Problem solution in C.

#include<stdio.h>
#define M 3005
int q, n, k;
char s[M];
int in[M][M], out[M][M];
int max(int a, int b)
{
    return a > b ? a : b;
}
int main()
{
    scanf("%d", &q);
    while(q--)
    {
        scanf("%d %d", &n, &k);
        scanf("%s", s);
        if( k == 0 )
        {
            printf("%dn", ( n + 1 ) * 26);
            continue;
        }
        if( k > 2 )
        {
            printf("0n");
            continue;
        }
        for( int l = 0 ; l < n ; l++ )
        {
            for( int i = 0 ; i + l < n ; i++ )
            {
                int j = i + l;
                if( i == j )
                {
                    in[i][j] = 1;
                }
                else if( s[i] == s[j] )
                {
                    if( i + 1 < j )
                    {
                        in[i][j] = 2 + in[i+1][j-1];
                    }
                    else
                    {
                        in[i][j] = 2;
                    }
                }
                else
                {
                    in[i][j] = max(in[i+1][j], in[i][j-1]);
                }
            }
        }
        for( int l = n - 1 ; l >= 0 ; l-- )
        {
            for( int i = 0 ; i + l < n ; i++ )
            {
                int j = i + l;
                if( i == j )
                {
                    if( 0 < i && j + 1 < n )
                    {
                        out[i][j] = 1 + out[i-1][j+1];
                    }
                    else
                    {
                        out[i][j] = 1;
                    }
                }
                else if( s[i] == s[j] )
                {
                    if( 0 < i && j + 1 < n )
                    {
                        out[i][j] = 2 + out[i-1][j+1];
                    }
                    else
                    {
                        out[i][j] = 2;
                    }
                }
                else
                {
                    out[i][j] = 0;
                    if( 0 < i )
                    {
                        out[i][j] = max(out[i][j], out[i-1][j]);
                    }
                    if( j + 1 < n )
                    {
                        out[i][j] = max(out[i][j], out[i][j+1]);
                    }
                }
            }
        }
        int cur = in[0][n-1], res = 0;
        for( int i = 0 ; i <= n ; i++ )
        {
            for( char ch = 'a' ; ch <= 'z' ; ch++ )
            {
                int my = ( i == 0 || i == n ) ? 1 : 1 + out[i-1][i];
                for( int j = 0 ; j < i && my < cur + k ; j++ )
                {
                    if( s[j] == ch )
                    {
                        int cand = 2;
                        if( 0 < j && i < n )
                        {
                            cand += out[j-1][i];
                        }
                        if( j + 1 <= i - 1 )
                        {
                            cand += in[j+1][i-1];
                        }
                        my = max(my, cand);
                    }
                }
                for( int j = i ; j < n && my < cur + k ; j++ )
                {
                    if( s[j] == ch )
                    {
                        int cand = 2;
                        if( 0 < i && j + 1 < n )
                        {
                            cand += out[i-1][j+1];
                        }
                        if( i <= j - 1 )
                        {
                            cand += in[i][j-1];
                        }
                        my = max(my, cand);
                    }
                }
                if( my >= cur + k )
                {
                    res++;
                }
            }
        }
        printf("%dn", res);
    }
    return 0;
}

Algorithms coding problems solutions AlgorithmsHackerRank

Post navigation

Previous post
Next post
CLOSE ADS
CLOSE ADS

Pages

  • About US
  • Contact US
  • Privacy Policy

Follow US

  • YouTube
  • LinkedIn
  • Facebook
  • Pinterest
  • Instagram
©2026 Programmingoneonone | WordPress Theme by SuperbThemes