HackerRank King and Four Sons problem solution YASH PAL, 31 July 2024 In this HackerRank King and Four Sons problem solution The King tasks you with finding the number of ways of selecting K detachments of battalions to capture K countries using the criterion that is given by the problem. Problem solution in Python. import math MOD = int(1e9 + 7) ans=[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]] def S_(n, k): def cnk(n, k): return int(math.factorial(n) // (math.factorial(k) * math.factorial(n - k))) return sum(cnk(n, i) for i in range(k, n + 1, 4)) % MOD def S(n, k = 0): if n < 5: return sum(ans[n][k::4]) r = pow(2, n - 2, MOD) - pow(2, n // 2, MOD) if n & 1: r = (r + pow(2, (n - 3) // 2, MOD) * sum(ans[3][(k - (n - 3)// 2) % 4::4])) % MOD else: r = (r + pow(2, (n - 3) // 2, MOD) * sum(ans[4][(k - (n - 3)// 2) % 4::4])) % MOD return int(r) n, k = map(int, input().split()) a = list(map(int, input().split())) det = [S(i) for i in a] mem = [[float("+inf")] * (i + 1) for i in range(n + 1)] mem[0][0] = 1 for i in range(1, n + 1): mem[i][1] = sum(det[:i]) % MOD mem[i][i] = (mem[i - 1][i - 1] * det[i - 1]) % MOD for i in range(3, n + 1): for j in range(2, min(i, k + 1)): mem[i][j] = (mem[i - 1][j] + mem[i - 1][j - 1] * det[i - 1]) % MOD print(mem[n][k]) Problem solution in Java. import java.io.*; import java.util.*; public class Solution { private static InputReader in; private static PrintWriter out; public static long mod = 1000000007; public static long INV4 = pow(new Complex(4,0), mod-2).a; static class Complex { public long a,b; public Complex(long a, long b) { this.a = a; this.b = b; if (a < 0) a += mod; } public Complex multiply(Complex other) { return new Complex((a * other.a + mod - (b * other.b % mod)) % mod, (a * other.b + b * other.a) % mod); } } public static Complex pow(Complex a, long e) { Complex r = new Complex(1,0); while(e>0) { if ((e&1)==1) r = r.multiply(a); a = a.multiply(a); e >>= 1; } return r; } public static long nways(long x) { Complex s1 = pow(new Complex(1, 1), x); Complex s2 = pow(new Complex(1, mod - 1), x); Complex s3 = pow(new Complex(2, 0), x); long res = (s3.a + s1.a + s2.a) % mod; return res * INV4 % mod; } public static void main(String[] args) throws IOException { in = new InputReader(System.in); out = new PrintWriter(System.out, true); int n = in.nextInt(); int k = in.nextInt(); long[] dp = new long[k+1]; dp[0] = 1; for (int i = 0; i < n; i++) { long m = nways(in.nextInt()); long[] next = new long[k+1]; System.arraycopy(dp, 0, next, 0, k+1); for (int j = 0; j < k; j++) { next[j+1] = (next[j+1] + dp[j] * m) % mod; } dp = next; } out.println(dp[k]); out.close(); System.exit(0); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } Problem solution in C++. #include<bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i = (a); i <= (b); ++i) #define FORD(i,a,b) for(int i = (a); i >= (b); --i) #define RI(i,n) FOR(i,1,(n)) #define REP(i,n) FOR(i,0,(n)-1) #define mini(a,b) a=min(a,b) #define maxi(a,b) a=max(a,b) #define mp make_pair #define pb push_back #define st first #define nd second #define sz(w) (int) w.size() typedef vector<int> vi; typedef long long ll; typedef long double ld; typedef pair<int,int> pii; const int inf = 1e9 + 5; const int nax = 1e6 + 5; const int mod = 1e9 + 7; pii mul(pii a, pii b) { ll c = (ll) a.st * b.st - (ll) a.nd * b.nd; ll d = (ll) a.st * b.nd + (ll) a.nd * b.st; c %= mod; d %= mod; if(c < 0) c += mod; if(d < 0) d += mod; return mp((int) c, (int) d); } pii pw(pii a, int k) { pii r = mp(1, 0); while(k) { if(k % 2) r = mul(r, a); a = mul(a, a); k /= 2; } return r; } int pw(int a, int k) { int r = 1; while(k) { if(k % 2) r = (ll) r * a % mod; a = (ll) a * a % mod; k /= 2; } return r; } int f(int n) { int r = pw(mp(1,mod-1), n).st + pw(mp(1,1), n).st; r %= mod; r += pw(2, n); r %= mod; r = (ll) r * pw(4, mod - 2) % mod; return r; } int dp[105]; int main() { int n, k; scanf("%d%d", &n, &k); dp[0] = 1; REP(_, n) { int a; scanf("%d", &a); a = f(a); FORD(j, k, 1) dp[j] = (dp[j] + (ll) dp[j-1] * a) % mod; } printf("%dn", dp[k]); return 0; } Problem solution in C. #include<stdio.h> #include<stdlib.h> #define CLOCK 1000000007 #define MODINV4 250000002 long int c[10000], M[10001][101]; long int fast_exp(long int x, int n, int clock) { if( n == 0 ) { return 1; } long int y = 1; while( n > 1 ) { if( n % 2 == 0 ) { x = x * x % clock; n = n / 2; } else { y = x * y % clock; x = x * x % clock; n = ( n - 1 ) / 2; } } return x * y % clock; } void compute_combinations(int n, int *army) { int vals[4] = { 2, 2, 0, -4 }; for( int i = 0 ; i < n ; i++ ) { int div = army[i] / 4; int rem = army[i] % 4; if( div % 2 == 0 ) { c[i] = fast_exp(2, army[i], CLOCK) + fast_exp(4, div, CLOCK) * ( vals[rem] + CLOCK ); } else { c[i] = fast_exp(2, army[i], CLOCK) - fast_exp(4, div, CLOCK) * ( vals[rem] - CLOCK ); } c[i] %= CLOCK; c[i] = c[i] * MODINV4 % CLOCK; } } int king(int n, int k, int* army) { compute_combinations(n, army); for( int i = 0 ; i <= n ; i++ ) { M[i][0] = 1; } for( int i = 1 ; i <= n ; i++ ) { for( int j = 1 ; j <= k ; j++ ) { M[i][j] = c[i - 1] * M[i - 1][j - 1] + M[i - 1][j]; M[i][j] %= CLOCK; } } return M[n][k]; } int main() { FILE *fptr = fopen(getenv("OUTPUT_PATH"), "w"); int n, k; scanf("%d %d", &n, &k); int *army = malloc(n * sizeof(int)); for( int i = 0 ; i < n ; i++ ) { scanf("%d", &army[i]); } fprintf(fptr, "%dn", king(n, k, army)); fclose(fptr); return 0; } algorithm coding problems