In this HackerRank Clique problem solution, A clique in a graph is a set of nodes such that there is an edge between any two distinct nodes in the set. Finding the largest clique in a graph is a computationally difficult problem. Currently, no polynomial-time algorithm is known for solving this. However, you wonder what is the minimum size of the largest clique in any graph with n nodes and m edges.
Problem solution in Python.
#!/bin/python3 import os import sys import math # # Complete the clique function below. # def clique(n, m): low = 1 high = n while low + 1 < high: mid = (low + high) // 2 tedges = int(turan(n, mid)) if tedges < m: low = mid else: high = mid return high def turan(n, k): return (n ** 2 - (n % k) * ((math.ceil(n / k)) ** 2) - (k - (n % k)) * ((n // k) ** 2)) // 2 if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') t = int(input()) for t_itr in range(t): nm = input().split() n = int(nm[0]) m = int(nm[1]) result = clique(n, m) fptr.write(str(result) + 'n') print(result) fptr.close()
Problem solution in Java.
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); for (int i=0; i<t; i++) { int n = scan.nextInt(); int m = scan.nextInt(); int k = 1; while (k<n && turan(n,k+1)<m) k++; System.out.println(k); } } // returns the maximum number of edges on a graph of size n without producing k-clique static int turan(int n, int k) { int b = n%(k-1); // # of larger independent sets int a = k-1-b; // # of smaller independent sets int j = n/(k-1); // size of smaller sets return j*j*a*(a-1)/2+j*(j+1)*a*b+(j+1)*(j+1)*b*(b-1)/2; } }
Problem solution in C++.
#include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <string> #include <vector> #include <queue> #include <set> #include <map> #include <cstdio> #include <cstdlib> #include <cctype> #include <cmath> #include <list> #include <cstring> #include <stack> #include <bitset> using namespace std; #define NMAX 2147483647 #define LMAX 9223372036854775807LL #define pb push_back #define pob pop_back #define mp make_pair #define st first #define nd second #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define FORD(i,a,b) for(int i=(a);i>(b);--i) #define REP(i,n) FOR(i,0,n) #define FORE(i,a,b) for(int i=(a);i<=(b);++i) int solve1(int n,int k) { int g1 = n%k ; int g2 = k - g1 ; int sz1 = n/k + 1 ; int sz2 = n/k ; int ret = g1*sz1*g2*sz2 + g1*(g1-1)*sz1*sz1/2 + g2*(g2-1)*sz2*sz2/2 ; return ret ; } int solve(int n,int e) { int k,low = 1,high = n + 1 ; while(low + 1 < high) { int mid = low + (high - low)/2 ; k = solve1(n,mid) ; if(k < e) low = mid ; else high = mid ; } return high ; } int main() { //freopen("input.txt","r",stdin); //freopen("out.txt","w",stdout); int TS; scanf("%d",&TS); FORE(ts,1,TS) { int N, M; scanf("%d%d",&N,&M); printf("%dn",solve(N,M)); } return 0; }
Problem solution in C.
#include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> int formula(unsigned int vertices, unsigned int k) { int squared = vertices * vertices; int clique_mod = vertices % k; int upper = ceil((double)vertices/(double)k); int lower = floor((double)vertices/(double)k); return (squared - (clique_mod * upper * upper) - (k - clique_mod)* lower * lower) / 2; } int main() { unsigned int cases, vertices, edges; int k; scanf("%u", &cases); while(cases--) { scanf("%u %u", &vertices, &edges); int min = 1; int max = vertices; k = (min + max)/2; while(k <= vertices) { int f = formula(vertices, k); int f_plus_1 = formula(vertices, k + 1); if (edges > f) { if (edges <= f_plus_1) { printf("%dn", k+1); break; } min = k + 1; } else { max = k - 1; } k = (min + max)/2; } } return 0; }