In this HackerRank Cards Permutation problem solution, we have given the n integers from 1 to n. and we need to write all possible permutations in increasing lexicographical order and wrote each permutation in a new line. and we need to print a single line containing a single integer denoting the sum of the line numbers of the permutations which could possibly be the permutation.
Problem solution in Python.
#!/bin/python3 import math import os import random import re import sys import itertools # # Complete the 'solve' function below. # # The function is expected to return a LONG_INTEGER. # The function accepts INTEGER_ARRAY x as parameter. # class fenwick: def __init__(self, n): self.tree = [0]*(n+1) def update(self, i): # i is 0 based index i += 1 while i < len(self.tree): self.tree[i] += 1 i += i & (-i) def query(self, i): # i is 0 based index sum = 0 i += 1 while i > 0: sum += self.tree[i] i -= i & (-i) return sum def solve(x): n = len(x) mod = 1000000007 missing = [True]*n bit1 = fenwick(n) bit2 = fenwick(n) for i in range(n): x[i] -= 1 if x[i] != -1: missing[x[i]] = False missisng_elems = [] for i in range(n): if missing[i]: missisng_elems.append(i) missing_sum = 0 m = len(missisng_elems) for i in missisng_elems: missing_sum += i if i < n-1: bit2.update(i+1) fact = [1]*500010 for i in range(1, 500010): fact[i] = i*fact[i-1] % mod total_cost = 0 p = 0 y = 0 for i in range(n-1): if x[i] != -1: if m == 0: D1 = bit1.query(x[i]) bit1.update(x[i]+1) cost = (x[i] - D1)*fact[n-i-1] else: D1 = bit1.query(x[i])*m no_of_smaller_missing_elems = bit2.query(x[i]) D2 = no_of_smaller_missing_elems*p # print('D1:{} D2:{}'.format(D1, D2)) bit1.update(x[i]+1) cost = (x[i]*m - (D1 + D2))*fact[m-1]*fact[n-i-1] y += m - no_of_smaller_missing_elems else: if p == 0: cost = (missing_sum - y)*fact[m-1]*fact[n-i-1] else: D1 = p*m*(m-1)//2 D2 = y*(m-1) cost = (missing_sum * (m-1) - (D1 + D2))*fact[m-2]*fact[n-i-1] p += 1 # print('i:{}, x[i]:{}, cost:{}'.format(i, x[i], cost)) total_cost += cost % mod return (total_cost + fact[m]) % mod if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input().strip()) a = list(map(int, input().rstrip().split())) result = solve(a) fptr.write(str(result) + 'n') fptr.close()
Problem solution in Java.
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class CardsPermutationFinal { private final static long MOD = 1000000007; private final static long INV_TWO = inverseElmnt(2); private static final long Y_DISP = 10000000000l; private static final Set<Long> USED_Y = new HashSet<>(); private static long pow(long n, long p) { if (p == 0) { return 1; } if (p % 2 == 0) { return pow((n * n) % MOD, p / 2) % MOD; } else { return (n * pow(n, p - 1)) % MOD; } } private static long inverseElmnt(long n) { return pow(n, MOD - 2); } private static long fact(int n) { long res = 1; for(int i = 1; i <= n; i++) { res = (res * i) % MOD; } return res; } private static long generateY() { long y; do { y = (long)(Y_DISP * Math.random()); } while (USED_Y.contains(y)); USED_Y.add(y); return y; } private long run(int n, int[] perm) { int[] undefinedAmnt = new int[n]; undefinedAmnt[n - 1] = 0; for (int i = n - 2; i >= 0; i--) { undefinedAmnt[i] = undefinedAmnt[i + 1] + (perm[i + 1] == 0 ? 1 : 0); } int totalUndef = undefinedAmnt[0] + (perm[0] == 0 ? 1 : 0); long[] bin = new long[n]; bin[n - 1] = 1; long chisl = totalUndef; long znam = 1; long[] incr = new long[n]; incr[n - 1] = 0; long currentIncr = perm[n - 1] == 0 ? 1 : 0; int chislForIncr = totalUndef - 1; int znamForIncr = 1; for (int i = n - 2; i >= 0; i--) { if (undefinedAmnt[i] == undefinedAmnt[i + 1]) { bin[i] = bin[i + 1]; } else { bin[i] = (((bin[i + 1] * chisl) % MOD) * inverseElmnt(znam))% MOD; chisl--; znam++; } if (perm[i] != 0) { incr[i] = perm[i + 1] != 0 ? incr[i + 1] : currentIncr; } else { if (0 == currentIncr) { currentIncr = 1; } else { currentIncr = (((currentIncr * chislForIncr) % MOD) * inverseElmnt(znamForIncr)) % MOD; chislForIncr--; znamForIncr++; } } } long[] colSum = new long[n]; long[] rowSum = new long[n]; int cell = n - 1; while (cell >= 0 && perm[cell] != 0) { cell--; } if (cell >= 0) { colSum[cell] = 1; rowSum[cell] = totalUndef; } int chislColSum = totalUndef - 1; int znamColSum = 1; int chislRowSum = totalUndef - 1; int znamRowSum = 2; for (int i = cell - 1; i >= 0; i--) { if (perm[i] == 0) { colSum[i] = (((colSum[i + 1] * chislColSum) % MOD) * inverseElmnt(znamColSum)) % MOD; chislColSum--; znamColSum++; rowSum[i] = (((rowSum[i + 1] * chislRowSum) % MOD) * inverseElmnt(znamRowSum)) % MOD; chislRowSum--; znamRowSum++; } else { colSum[i] = colSum[i + 1]; rowSum[i] = rowSum[i + 1]; } } int[] lessAmntLeft = new int[n + 1]; cell = n - 1; while (cell >= 0 && perm[cell] == 0) { cell--; } Treap t = null; if (cell >= 0) { t = new Treap(perm[cell], generateY(), null, null); } for (int i = cell - 1; i >= 0; i--) { if (perm[i] != 0) { Treap res = new Treap(perm[i], generateY(), null, null); Treap[] splitRes = t.split(perm[i]); lessAmntLeft[perm[i]] = splitRes[0] == null ? 0 : splitRes[0].size; if (null != splitRes[0]) { res = merge(splitRes[0], res); } if (null != splitRes[1]) { res = merge(res, splitRes[1]); } t = res; } } int[] defVals = new int[n - totalUndef]; int defValsSize = 0; for (int i = 0; i < n; i++) { if (perm[i] != 0) { defVals[defValsSize] = perm[i]; defValsSize++; } } Arrays.sort(defVals); long[] greaterUndef = new long[n + 1]; long[] smallerDefined = new long[n + 1]; long totalSum = 0; for (int i = 0; i < defValsSize; i++) { int definedValue = defVals[i]; int greaterCnt = n - definedValue - (defValsSize - i - 1); greaterUndef[definedValue] = greaterCnt; totalSum = (totalSum + greaterCnt) % MOD; smallerDefined[definedValue] = i; } long[] resultInpt = new long[n]; for (int i = n - 1; i >= 0; i--) { if (perm[i] != 0) { resultInpt[i] = (((incr[i] * (perm[i] - 1 - smallerDefined[perm[i]])) % MOD) + (lessAmntLeft[perm[i]] * bin[i]) % MOD) % MOD; } } int undef = totalUndef; for (int i = 0; i < n; i++) { if (perm[i] == 0) { resultInpt[i] = (((((rowSum[i] * undef) % MOD) * (undef - 1)) % MOD) * INV_TWO) % MOD; resultInpt[i] = (resultInpt[i] + (colSum[i] * totalSum) % MOD) % MOD; undef--; } else { totalSum = (totalSum - greaterUndef[perm[i]] + MOD) % MOD; } } int undefRight = undefinedAmnt[0]; int undefLeft = 0; long rightFact = fact(undefRight); long leftFact = 1; resultInpt[0] = (resultInpt[0] * rightFact) % MOD; for (int i = 1; i < n; i++) { if (perm[i] == 0) { rightFact = (rightFact * inverseElmnt(undefRight)) % MOD; undefRight--; } if (perm[i - 1] == 0) { undefLeft++; leftFact = (leftFact * undefLeft) % MOD; } resultInpt[i] = (resultInpt[i] * ((rightFact * leftFact) % MOD)) % MOD; } long fact = 1; int cnt = 1; for (int i = n - 2; i >= 0; i--) { resultInpt[i] = (resultInpt[i] * fact) % MOD; cnt++; fact = (fact * cnt) % MOD; } long result = fact(totalUndef); for (int i = 0; i < n; i++) { result = (result + resultInpt[i]) % MOD; } return result; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); //BufferedReader br = new BufferedReader(new FileReader("D:\cards44.txt")); //BufferedReader br = new BufferedReader(new FileReader("D:\cards41.txt")); int n = Integer.parseInt(br.readLine()); int[] perm = new int[n]; StringTokenizer permTkn = new StringTokenizer(br.readLine()); for (int i = 0; i < n; i++) { perm[i] = Integer.parseInt(permTkn.nextToken()); } //Date start = new Date(); long res = new CardsPermutationFinal().run(n, perm); //Date end = new Date(); //System.out.println(end.getTime() - start.getTime() + "ms"); System.out.println(res); } private static void recalculateSize(Treap t) { if (null != t) { t.recalculateSize(); } } public Treap merge(Treap l, Treap r) { if (null == l) { return r; } if (null == r) { return l; } Treap res; if (l.y > r.y) { Treap newTreap = merge(l.right, r); recalculateSize(newTreap); res = new Treap(l.x, l.y, l.left, newTreap); } else { Treap newTreap = merge(l, r.left); recalculateSize(newTreap); res = new Treap(r.x, r.y, newTreap, r.right); } recalculateSize(res); return res; } private class Treap { private int x; private long y; private Treap left; private Treap right; private int size; public Treap(final int x, final long y, final Treap left, final Treap right) { this.x = x; this.y = y; this.right = right; this.left = left; } private void recalculateSize() { size = (null == left ? 0 : left.size) + (null == right ? 0 : right.size) + 1; } public Treap[] split(int x) { Treap newLeft = null; Treap newRight = null; if (x < this.x) { if (this.left == null) { newRight = new Treap(this.x, this.y, this.left, this.right); } else { Treap[] splitResult = this.left.split(x); newLeft = splitResult[0]; newRight = new Treap(this.x, this.y, splitResult[1], this.right); } } else { if (this.right == null) { newLeft = new Treap(this.x, this.y, this.left, this.right); } else { Treap[] splitResult = this.right.split(x); newLeft = new Treap(this.x, this.y, this.left, splitResult[0]); newRight = splitResult[1]; } } CardsPermutationFinal.recalculateSize(newLeft); CardsPermutationFinal.recalculateSize(newRight); return new Treap[]{newLeft, newRight}; } } }
Problem solution in C++.
#include <bits/stdc++.h> using namespace std; #define ll long long #define up(i,j,n) for (int i = j; i <= n; i++) #define down(i,j,n) for (int i = j; i >= n; i--) #define cmax(a,b) a = ((a) > (b) ? (a) : (b)) #define cmin(a,b) a = ((a) < (b) ? (a) : (b)) #define cadd(a,b) a = add (a, b) #define cpop(a,b) a = pop (a, b) #define cmul(a,b) a = mul (a, b) #define pii pair<int, int> #define fi first #define se second #define SZ(x) (int)x.size() #define Auto(i,node) for (int i = LINK[node]; i; i = e[i].next) const int MAXN = 3e5 + 5; const int oo = 0x3f3f3f3f; const int mod = 1e9 + 7; const int inv2 = (mod + 1) >> 1; inline int add(int a, int b){a += b; return a >= mod ? a - mod : a;} inline int pop(int a, int b){a -= b; return a < 0 ? a + mod : a;} inline int mul(int a, int b){return 1LL * a * b % mod;} int N, a[MAXN], fac[MAXN], pre[MAXN], cnt = 0, ans = 0, cur = 0, lex = 0; namespace BIT{ int c[MAXN]; inline int lowbit(int i){return i & (-i);} inline void upd(int o, int v){ for (int i = o + 1; i <= N; i += lowbit(i)) c[i] += v; } inline int calc(int o){ int sum = 0; for (int i = o + 1; i >= 1; i -= lowbit(i)) sum += c[i]; return sum; } }using namespace BIT; namespace solution{ int cal2(int n){return mul(mul(n, pop(n, 1)), inv2);} void Prepare(){ scanf("%d", &N); up (i, 1, N) scanf("%d", &a[i]); up (i, 1, N) { a[i]--; cnt += (a[i] == -1); if (a[i] >= 0) pre[a[i]] = 1; } fac[0] = 1; up (i, 1, N) fac[i] = mul(i, fac[i - 1]); up (i, 1, N - 1) pre[i] += pre[i - 1]; lex = mul(mul(N, pop(N, 1)), inv2); up (i, 1, N) if (a[i] != -1) cpop(lex, a[i]); } void Solve(){ up (i, 1, N) { if (a[i] != -1) { int sum = mul(fac[cnt] , a[i] - calc(a[i])); if (cnt >= 1) cpop(sum, mul(fac[cnt - 1], mul(cur, a[i] + 1 - pre[a[i]]))); cmul(sum, fac[N - i]); cadd(ans, sum); upd(a[i], 1); cpop(lex, pop(N - 1 - a[i], pop(pre[N - 1], pre[a[i]]))); }else { int sum = mul(lex, fac[cnt - 1]); if (cnt >= 2) cpop(sum, mul(fac[cnt - 2], mul(cur, cal2(cnt)))); cmul(sum, fac[N - i]); cadd(ans, sum); cur++; } } printf("%dn", add(ans, fac[cnt])); } } int main(){ using namespace solution; Prepare(); Solve(); return 0; }
Problem solution in C.
#include<stdio.h> int n, a[300100], pos[300100], mod = 1e9 + 7, occ[300100], les[300100], grt[300100], st[300100], lst[300100], gst[300100], bitree[300050]; void add(int idx, int val) { while( idx <= n ) { bitree[idx] += val; idx += ( idx & -idx ); } } int get(int idx) { int ans = 0; while( idx > 0 ) { ans += bitree[idx]; idx -= ( idx & -idx ); } return ans; } long long fact[300100], factsumfr[300100], ans = 0; long long pwr(long long a, long long b) { if( b == 0 ) { return 1ll; } long long temp = pwr(a, b/2); temp = ( temp * temp ) % mod; if( b & 1 ) { temp = ( temp * a ) % mod; } return temp; } long long inv(long long a) { return pwr(a, mod-2); } int main() { int i; scanf("%d", &n); for( i = 1 ; i <= n ; i++ ) { scanf("%d", &a[i]); pos[a[i]] = i; if(a[i]) { st[a[i]] = 1; } if(a[i]) { occ[i] = 1; } } fact[0] = 1; for( i = 1 ; i <= n ; i++ ) { les[i] = les[i-1] + occ[i], lst[i] = lst[i-1] + st[i], fact[i] = ( fact[i-1] * i ) % mod; } for( i = n ; i >= 1 ; i-- ) { grt[i] = grt[i+1] + occ[i], gst[i] = gst[i+1] + st[i]; } int k = les[n]; long long faci = fact[n-k], faci1 = fact[n-k-1], sumfrfr = 0; for( i = 1 ; i <= n ; i++ ) { if( a[i] == 0 ) { sumfrfr = ( sumfrfr + ( ( fact[n-i] * ( n - i - grt[i+1] ) ) % mod * inv(n-k-1) ) % mod ) % mod; factsumfr[i] = ( factsumfr[i-1] + fact[n-i] ) % mod; } else { factsumfr[i] = factsumfr[i-1]; } } for( i = 1 ; i <= n ; i++ ) { long long inc = 0; if( st[i] == 0 ) { inc += ( inc + ( ( sumfrfr * ( i - 1 - lst[i] ) ) % mod * fact[n-k-1] ) % mod ) % mod; } else { inc = ( inc + ( ( ( n - i + 1 - gst[i] ) * factsumfr[pos[i]] ) % mod * fact[n-k-1] ) % mod ) % mod; inc = ( inc + ( ( ( ( ( i - lst[i] ) * fact[n-pos[i]] ) % mod * fact[n-k] ) % mod * ( n - pos[i] + 1 - grt[pos[i]] ) ) % mod * inv(n-k) ) % mod ) % mod; add(pos[i], 1); int inv1 = get(n) - get(pos[i]); inc = ( inc + ( ( fact[n-pos[i]] * fact[n-k] ) % mod * inv1 ) % mod ) % mod; } ans = ( ans + inc ) % mod; } ans = ( ans + fact[n-k] ) % mod; printf("%lldn", ans); return 0; }