Skip to content
Programmingoneonone
Programmingoneonone

Learn everything about programming

  • Home
  • CS Subjects
    • Internet of Things (IoT)
    • Digital Communication
    • Human Values
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programmingoneonone
Programmingoneonone

Learn everything about programming

HackerEarth Zeus and Fibonacci problem solution

YASH PAL, 31 July 2024
In this HackerEarth Zeus and Fibonacci problem solution, You are given an array A consisting of N integers. You have to process two types of queries on this array.
  1. Type 1: Change the ith element to X
  2. Type 2: Given l and r, calculate: Sigma(i=l,r)Sigma(j=i,r)Fib(Sigma(k=i,j) Ak)
HackerEarth Zeus and Fibonacci problem solution

HackerEarth Zeus and Fibonacci problem solution.

#include <bits/stdc++.h>
using namespace std;
#define ll long long int
#define inf 1000000000000
#define mod 1000000007
#define pb push_back
#define mp make_pair
#define all(v) v.begin(),v.end()
#define S second
#define F first
#define boost1 ios::sync_with_stdio(false);
#define boost2 cin.tie(0);
#define mem(a,val) memset(a,val,sizeof a)
#define maxn 100001

class Matrix
{
public:
int N;
int M[2][2];
Matrix() {}

Matrix(int _N)
{
N = _N;
memset(M, 0, sizeof M);
}
};
Matrix EMP(2),ID(2), FIB(2);
void gen()
{
ID.M[0][0] = ID.M[1][1] = 1;
FIB.M[1][1] = FIB.M[0][1] = FIB.M[1][0] = 1;
}

Matrix operator*(const Matrix &X, const Matrix &Y)
{
int N = X.N;
Matrix Z(N);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
for (int k = 0; k < N; k++)
{
Z.M[i][j] += (X.M[i][k] * 1LL * Y.M[k][j]) % mod;
if (Z.M[i][j] >= mod)
Z.M[i][j] -= mod;
}
}
}
return Z;
}
Matrix operator^(Matrix X, ll power)
{
Matrix res = ID;
while (power)
{
if (power & 1)
res = res * X;
X = X * X;
power >>= 1;
}
return res;
}
Matrix operator+(Matrix X, const Matrix &Y)
{
for (int i = 0; i < X.N; i++)
{
for (int j = 0; j < X.N; j++)
{
X.M[i][j] = (X.M[i][j] + Y.M[i][j]);
if (X.M[i][j] >= mod) X.M[i][j] -= mod;
}
}
return X;
}
// fib(0)=0 fib(1)=1
// to calculate fib(n) take mat^(n)
ll arr[maxn];
Matrix ans[4*maxn],pre[4*maxn],suff[4*maxn],sum[4*maxn];


void build(ll node,ll a,ll b)
{
if(a==b)
{
ans[node]=FIB^(arr[a]);
pre[node]=FIB^(arr[a]);
suff[node]=FIB^(arr[a]);
sum[node]=FIB^(arr[a]);
return;
}
ll mid=(a+b)/2;
build(2*node,a,mid);
build(2*node+1,mid+1,b);

pre[node]=pre[2*node];
pre[node]=(pre[node]+(sum[2*node]*pre[2*node+1]));

suff[node]=suff[2*node+1];
suff[node]=(suff[node]+(sum[2*node+1]*suff[2*node]));

sum[node]=sum[2*node]*sum[2*node+1];

ans[node]=ans[2*node]+ans[2*node+1];
ans[node]=(ans[node]+(suff[2*node]*pre[2*node+1]));
}
void update(ll node,ll a,ll b,ll ind,ll val)
{
if(a>b || a>ind || b<ind)
return;
if(a==b)
{
ans[node]=FIB^val;
pre[node]=FIB^val;
suff[node]=FIB^val;
sum[node]=FIB^val;
return;
}
ll mid=(a+b)/2;
if(ind<=mid)
update(2*node,a,mid,ind,val);
else
update(2*node+1,mid+1,b,ind,val);

pre[node]=pre[2*node];
pre[node]=(pre[node]+(sum[2*node]*pre[2*node+1]));

suff[node]=suff[2*node+1];
suff[node]=(suff[node]+(sum[2*node+1]*suff[2*node]));

sum[node]=sum[2*node]*sum[2*node+1];

ans[node]=ans[2*node]+ans[2*node+1];
ans[node]=(ans[node]+(suff[2*node]*pre[2*node+1]));
}
pair<pair<Matrix,Matrix>,pair<Matrix,Matrix> > query(ll node,ll a,ll b,ll l,ll r)
{
if(a>b || a>r || b<l)
assert(false);
if(a>=l && b<=r)
return {{ans[node],sum[node]},{pre[node],suff[node]}};

ll mid=(a+b)/2;

if(mid<l)return query(2*node+1,mid+1,b,l,r);
else if(mid+1>r)return query(2*node,a,mid,l,r);

pair<pair<Matrix,Matrix>,pair<Matrix,Matrix> > p1=query(2*node,a,mid,l,r);
pair<pair<Matrix,Matrix>,pair<Matrix,Matrix> > p2=query(2*node+1,mid+1,b,l,r);
pair<pair<Matrix,Matrix>,pair<Matrix,Matrix> > p;

p.S.F=p1.S.F;
p.S.F=(p.S.F+(p1.F.S*p2.S.F));

p.S.S=p2.S.S;
p.S.S=(p.S.S+(p2.F.S*p1.S.S));

p.F.S=p1.F.S*p2.F.S;

p.F.F=p1.F.F+p2.F.F;
p.F.F=(p.F.F+(p1.S.S*p2.S.F));

return p;

}
int main()
{
boost1;boost2;
ll i,j,n,q,l,r,type,val,ind;
cin>>n;
assert(1<=n&&n<=100000);
gen();
for(i=1;i<=n;i++){
cin>>arr[i];
assert(1<=arr[i]&&arr[i]<=1000000000);
}

build(1,1,n);
cin>>q;
assert(1<=q&&q<=100000);
while(q--)
{
cin>>type;
assert(type==1||type==2);
if(type==1)
{
cin>>ind>>val;
assert(1<=ind&&ind<=n);
assert(1<=val&&val<=1000000000);
update(1,1,n,ind,val);
}
else
{
cin>>l>>r;
assert(l<=r&&1<=l&&l<=n&&1<=r&&r<=n);
Matrix temp=query(1,1,n,l,r).F.F;
assert(0<=((temp.M[0][1])%mod)&&((temp.M[0][1])%mod)<mod);
cout<<(temp.M[0][1])%mod<<endl;
}
}
return 0;
}
coding problems solutions

Post navigation

Previous post
Next post

Pages

  • About US
  • Contact US
  • Privacy Policy

Follow US

  • YouTube
  • LinkedIn
  • Facebook
  • Pinterest
  • Instagram
©2025 Programmingoneonone | WordPress Theme by SuperbThemes