In this HackerEarth Operations on a tree problem solution, You are given an undirected tree G with N nodes. You are also given an array A of N integer elements where A[i] represents the value assigned to node i and an integer K.
You can apply the given operation on the tree at most once:
Select a node x in the tree and consider it as the root of the tree.
Select a node y in the tree and update the value of each node in the subtree of y by taking its XOR with K. That is, for each node u in the subtree of node y, set A[u] = A[u]XORK.
Find the maximum sum of values of nodes that are available in the tree, after the above operation is used optimally.
HackerEarth Operations on a tree problem solution.
#include<bits/stdc++.h>
using namespace std;
#define int long long
int ans;
void dfs(vector<int> tree[], int v, int p, int dp[][2], vector<int> &A, int K)
{
dp[v][0] = A[v];
dp[v][1] = (A[v]^K);
for(auto j : tree[v])
if(j != p)
dfs(tree, j, v, dp, A, K), dp[v][0]+=dp[j][0], dp[v][1]+=dp[j][1];
}
void dfs(vector<int> tree[], int v, int p, int dp[][2])
{
ans = max(ans, dp[1][0] - dp[v][0] + dp[v][1]);
for(auto j : tree[v])
if(j != p)
{
ans = max(ans, dp[1][1] - dp[j][1] + dp[j][0]);
dfs(tree, j, v, dp);
}
}
long long solve (int N, int K, vector<int> A, vector<vector<int> > edges) {
// Write your code here
vector<int> tree[N+1];
int i;
assert(1 <= N && N <= 1e5);
for(i=0;i<N-1;i++)
{
int u = edges[i][0], v = edges[i][1];
assert(1 <= u && u <= N);
assert(1 <= v && v <= N);
assert(u != v);
tree[u].push_back(v);
tree[v].push_back(u);
}
reverse(A.begin(), A.end());
A.push_back(0);
reverse(A.begin(), A.end());
int dp[N+1][2];
ans = 0;
dfs(tree, 1, 0, dp, A, K);
ans = max(dp[1][0], dp[1][1]);
dfs(tree, 1, 0, dp);
return ans;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
int T;
cin >> T;
assert(1 <= T && T <= 10);
for(int t_i = 0; t_i < T; t_i++)
{
int N;
cin >> N;
int K;
cin >> K;
assert(0 <= K && K <= 1e9);
vector<int> A(N);
for(int i_A = 0; i_A < N; i_A++)
{
cin >> A[i_A];
assert(0 <= A[i_A] && A[i_A] <= 1e9);
}
vector<vector<int> > edges(N-1, vector<int>(2));
for (int i_edges = 0; i_edges < N-1; i_edges++)
{
for(int j_edges = 0; j_edges < 2; j_edges++)
{
cin >> edges[i_edges][j_edges];
}
}
long long out_;
out_ = solve(N, K, A, edges);
cout << out_;
cout << "n";
}
}
Second solution
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 14, L = 30;
int n, k, dp[N][L], sz[N];
ll ans;
vector<int> g[N];
void dfs(int v = 0, int p = -1) {
sz[v] = 1;
for (auto u : g[v])
if (u != p) {
dfs(u, v);
sz[v] += sz[u];
ll cur = 0;
for (int i = 0; i < L; ++i)
if (k >> i & 1) {
cur += ll(sz[u] - dp[u][i] * 2) * (1 << i);
dp[v][i] += dp[u][i];
}
ans = max(ans, cur);
}
}
int main() {
ios::sync_with_stdio(0), cin.tie(0);
int t;
cin >> t;
while (t--) {
ans = 0;
cin >> n >> k;
fill(g, g + n, vector<int>());
ll s = 0;
for (int i = 0; i < n; ++i) {
int x;
cin >> x;
s += x;
for (int j = 0; j < L; ++j)
dp[i][j] = x >> j & 1;
}
for (int i = 0; i < n - 1; ++i) {
int v, u;
cin >> v >> u;
--v;
--u;
g[v].push_back(u);
g[u].push_back(v);
}
dfs();
for (int u = 0; u < n; ++u) {
ll cur = 0;
for (int i = 0; i < L; ++i)
if (k >> i & 1)
cur += ll(sz[0] - sz[u] - (dp[0][i] - dp[u][i]) * 2) * (1 << i);
ans = max(ans, cur);
}
cout << ans + s << 'n';
}
}