Skip to content
Programmingoneonone
Programmingoneonone

Learn everything about programming

  • Home
  • CS Subjects
    • Internet of Things (IoT)
    • Digital Communication
    • Human Values
    • Cybersecurity
  • Programming Tutorials
    • C Programming
    • Data structures and Algorithms
    • 100+ Java Programs
    • 100+ C Programs
  • HackerRank Solutions
    • HackerRank Algorithms Solutions
    • HackerRank C problems solutions
    • HackerRank C++ problems solutions
    • HackerRank Java problems solutions
    • HackerRank Python problems solutions
Programmingoneonone
Programmingoneonone

Learn everything about programming

HackerEarth Count the permutations problem solution

YASH PAL, 31 July 2024
In this HackerEarth Count the permutations problem solution You are given two sequences A and B of length N. Determine the number of different ways to permute sequence A such that it is lexicographically smaller than the sequence B.
A sequence (X1,X2,…,Xk) is strictly lexicographically smaller than a sequence (Y1,Y2,…,YK), if there exists an index t (1 <= t <= K)  such that:
  1. Xt < Yt
  2. Xr = Yr for all 1 <= r < t
A permutation X of A is considered different from another permutation Y of A, if there exists an index i (1 <= i <= N) such that Xi != Yi. For example:
If A = (1,1,1), then there is only one different permutation of A. 
If A = (1,1,2,2), then there are 6 different permutations of A.
HackerEarth Count the permutations problem solution

HackerEarth Count the permutations problem solution.

#include "bits/stdc++.h"
using namespace std;
#define fi first
#define se second
#define ll long long
#define dbg(v) cerr<<#v<<" = "<<v<<'n'
#define vi vector<int>
#define vl vector <ll>
#define pii pair<int,int>
#define vii vector < pii >
#define mp make_pair
#define db long double
#define pb push_back
#define all(s) s.begin(),s.end()
template < class P , class Q > ostream& operator<<(ostream& stream, pair < P , Q > v){ stream << "(" << v.fi << ',' << v.se << ")"; return stream;}
template < class T > ostream& operator<<(ostream& stream, const vector<T> v){ stream << "[ "; for (int i=0; i<(int)v.size(); i++) stream << v[i] << " "; stream << "]"; return stream;}
template < class T > T smin(T &a,T b) {if (a > b) a = b;return a;}
template < class T > T smax(T &a,T b) {if (a < b) a = b;return a;}
const int N = 1e6 + 5;
const int C = 2e5;
const int mod = 1e9 + 7;
int a[N];
int b[N];
int t[N];
void upd(int i,int v) {
for (;i <= C;i += i&(-i))
t[i] += v;
}
int que(int i) {
int ans = 0;
for (;i > 0;i -= i&(-i))
ans += t[i];
return ans;
}
int f[N];
int c[N];
int cnt[N];
int pow(int a,int b,int mod) {
int ans = 1;
while (b) {
if (b & 1)
ans = (1ll * ans * a) % mod;
a = (1ll * a * a) % mod;
b /= 2;
}
return ans;
}
int main(void) {
int n;
cin>>n;
for (int i = 1;i <= n;++i)
cin>>a[i],++cnt[a[i]];
for (int i = 1;i <= n;++i)
cin>>b[i];
f[0] = c[0] = 1;
for (int i = 1;i <= C + 55;++i) {
f[i] = (1ll * f[i - 1] * i) % mod;
c[i] = pow(f[i],mod - 2,mod);
}
int comb = f[n];
for (int i = 1;i <= C;++i)
comb = (1ll * comb * c[cnt[i]]) % mod;
for (int i = 1;i <= C;++i)
upd(i,cnt[i]);
int ans = 0;
for (int i = 1;i <= n;++i) {
comb = (1ll * comb * pow(n - i + 1,mod - 2,mod)) % mod;
ans = (ans + 1ll * comb * que(b[i] - 1)) % mod;
comb = (1ll * comb * cnt[b[i]]) % mod;
--cnt[b[i]];
if (cnt[b[i]] < 0)
break;
upd(b[i],-1);
}
cout << ans << 'n';
return 0;
}

Second solution

import numpy as np
n=int(input())
a=np.array(list(map(int,input().split())))
b=np.array(list(map(int,input().split())))
assert (n,)==a.shape and (n,)==b.shape and n<=100000 and n>=1 and np.sum(a>200000)==0 and np.sum(b>200000)==0 and np.sum(a<0)==0 and np.sum(b<0)==0, exit(1)
dict={}
kind=0
for el in a:
if el in dict:
dict[el]+=1
else:
dict[el]=1
kind+=1
bit=[0 for i in range(200002)]
def add(pos,x):
pos+=1
while pos<200002:
bit[pos]+=x
pos+=pos&-pos
def sum(pos):
pos+=1
r=0
while pos:
r+=bit[pos];
pos-=pos&-pos
return r
for el in a:
add(el,1)
MOD=1000000007
ans=0
fac=[1 for i in range(200002)]
for j in range(1,200002):
fac[j]=fac[j-1]*j
fac[j]%=MOD
inv=[pow(fac[i],MOD-2,MOD) for i in range(200002)]
D=1
for u in dict:
D*=inv[dict[u]]
D%=MOD
for i in range(n):
F=sum(b[i]-1)
#print(F)
F*=fac[n-i-1]*D
#print(fac[n-i-1])
F%=MOD
ans+=F
if b[i] in dict and dict[b[i]]!=0:
D*=fac[dict[b[i]]]
D*=inv[dict[b[i]]-1]
D%=MOD
dict[b[i]]-=1
add(b[i],-1)
else:
break
ans%=MOD
print(str(ans))
coding problems solutions

Post navigation

Previous post
Next post

Pages

  • About US
  • Contact US
  • Privacy Policy

Follow US

  • YouTube
  • LinkedIn
  • Facebook
  • Pinterest
  • Instagram
©2025 Programmingoneonone | WordPress Theme by SuperbThemes