In this Leetcode Combinations problem solution we have Given two integers n and k, return all possible combinations of k numbers out of the range [1, n]. You may return the answer in any order.
Problem solution in Python.
def combine(self, n: int, k: int) -> List[List[int]]: nums=[] for i in range(1,n+1,1): nums.append(i) temp=[] result=[] def dfs(m,num): if m==k: result.append(temp[:]) return else: if len(num)<k-m: return for i in range(len(num)): temp.append(num[i]) dfs(m+1,num[i+1:]) temp.pop() dfs(0,nums) return result
Problem solution in Java.
class Solution { public List<List<Integer>> combine(int n, int k) { int[] nums=new int[n]; for(int i=1;i<=n;i++) { nums[i-1]=i; } List<List<Integer>> ans=new ArrayList<>(); List<Integer> ls=new ArrayList<>(); helper(nums,k,ls,ans,0); return ans; } private void helper(int[] nums,int k,List<Integer> ls,List<List<Integer>> ans,int start) { if(ls.size()==k) { ans.add(new ArrayList<>(ls)); } else { for(int i=start;i<nums.length;i++) { ls.add(nums[i]); helper(nums,k,ls,ans,i+1); ls.remove(ls.size()-1); } } } }
Problem solution in C++.
class Solution {
public:
vector<vector<int>> combine(int n, int k) {
vector<vector<int>> output;
vector<int> combination;
combine(output, combination, n, k, 1);
return output;
}
private:
void combine(vector<vector<int>>& output, vector<int> combination, int n, int k, int i) {
if (combination.size() == k) {
output.push_back(combination);
return;
}
for (int j = i; j <= n; j++) {
combination.push_back(j);
combine(output, combination, n, k, j + 1);
combination.pop_back();
}
}
};
Problem solution in C.
int Com(int n, int k) { long int no = 1; long int de = 1; for (int i = 1; i < k+1; i++) { de *= i; } for (int i = 0; i < k; i++) { no *= (n-i); } return no / de; } int** combine(int n, int k, int* returnSize, int** returnColumnSizes){ int total = Com(n,k); *returnSize = total; int cnt = 0, j = 0; int *K = malloc(sizeof(int) * k); K[0] = 0; for (int i = 1; i < k; i++) { K[i] = K[i-1] + 1; } int ** res = malloc(sizeof(int *) * total); (*returnColumnSizes) = malloc(sizeof(int) * total); for (int i = 0; i < total; i++) { (*returnColumnSizes)[i] = k; res[i] = malloc(sizeof(int) * k); for (j = 0; j < k; j++) { res[i][j] = 1 + K[j]; } if (i == total-1) { break; } K[k-1]++; cnt = 0; while ((K[k-1-cnt] > n - cnt - 1) && (k - cnt != 1)) { cnt++; K[k-1-cnt]++; } for (j = cnt; j > 0; j--) { K[k-j] = K[k-1-j] + 1; } } return res; }