HackerEarth GCD Strings problem solution YASH PAL, 31 July 2024 In this HackerEarth GCD Strings problem solution Let P[0…N-1] be a binary string of length N. Then let’s define S to power infinite (P) as an infinite string with S to power infinite[i] = P[i % N] all I >= 0 (informally, S to power infinite (P) is the concatenation of P with itself an infinite number of times). Define the GCD-string of two integers a,b, with a >= b to be a binary string of length a that satisfies the following: g (a,b) = 100…000 (1 followed by a – 1 zeros ) if a is divisible by b g(a,b) = First a characters of S to power infinite (g(b,a mod b)) otherwise We can define F(a,b) to be the value of the integer represented by the binary string g(a,b) in base-2. Given T pairs of integers (x, y), compute F(x,y) mod 10 to power 9 plus 7 for each pair. HackerEarth GCD Strings problem solution. import java.io.OutputStream;import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;import java.util.StringTokenizer;import java.io.IOException;import java.io.BufferedReader;import java.io.InputStreamReader;import java.io.InputStream;public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); GCDStrings solver = new GCDStrings(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class GCDStrings { public int mod = 1000000007; public void solve(int testNumber, InputReader in, PrintWriter out) { int x = in.nextInt(), y = in.nextInt(); out.println(f(x, y)[0]); } public long pow(long b, long e) { long r = 1; while (e > 0) { if (e % 2 == 1) r = r * b % mod; b = b * b % mod; e >>= 1; } return r; } public long sum(long shift, long terms) { return (pow(2, shift * terms) + mod - 1) * pow(pow(2, shift) + mod - 1, mod - 2) % mod; } public long[] f(int x, int y) { if (x % y == 0) return new long[]{pow(2, x - 1), pow(2, y - 1)}; long[] r = f(y, x % y); return new long[]{((r[0] * sum(y, x / y) % mod * pow(2, x % y)) + r[1]) % mod, r[0]}; } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } }} Second solution #include<bits/stdc++.h>#include<iostream>using namespace std;#define fre freopen("in.txt","r",stdin);freopen("0.out","w",stdout)#define abs(x) ((x)>0?(x):-(x))#define MOD 1000000007#define LL signed long long int#define scan(x) scanf("%d",&x)#define print(x) printf("%dn",x)#define scanll(x) scanf("%lld",&x)#define printll(x) printf("%lldn",x)#define rep(i,from,to) for(int i=(from);i <= (to); ++i)#define pii pair<int,int>LL pow(LL base, LL exponent,LL modulus = MOD){ LL result = 1; while (exponent > 0) { if (exponent % 2 == 1) result = (result * base) % modulus; exponent = exponent >> 1; base = (base * base) % modulus; } return result;}LL func(LL x,LL n, LL len){ LL r = pow(2,len,MOD); LL temp = (pow(r, n, MOD)-1) * pow(r-1, MOD-2, MOD) % MOD; temp = temp * x % MOD; return temp;}pair<LL,LL> gcd(int a,int b){ if(a%b==0){ return {pow(2,a-1,MOD), pow(2,b-1,MOD)}; } else{ pair<LL,LL> x = gcd(b, a%b); return {(func(x.first,a/b,b) * pow(2,a%b,MOD) + x.second) % MOD, x.first}; }}int main(){ int T; cin>>T; while(T--){ int x,y; cin>>x>>y; cout<<gcd(x,y).first<<endl; }} coding problems