Binary search tree in Data Structure YASH PAL, 4 June 202028 May 2024 The binary search tree is a tree in which all the values in the left subtree are less than the value of the root node and values of the right subtree are greater than the value of the root node. as you see in the above example the left subtree has values lesser than the root node’s value and the right subtree has a value greater than the root node’s value. Properties of Binary search tree All the keys in the left subtree of the root node are less than the key in the root node. All the keys in the right subtree of the root node are greater than the key in the root node. The Left and right subtrees of the root node are also binary search trees. Program to implement a binary search tree using Python. class TreeEmptyError(Exception): pass class Node: def __init__(self, value): self.info = value self.lchild = None self.rchild = None class BinarySearchTree: def __init__(self): self.root = None def is_empty(self): return self.root is None def _insert(self, p, x): if p is None: p = Node(x) elif x < p.info: p.lchild = self._insert(p.lchild, x) elif x > p.info: p.rchild = self._insert(p.rchild, x) else: print(x, " already present in the tree") return p def insert1(self, x): p = self.root par = None while p is not None: par = p if x < p.info: p = p.lchild elif x > p.info: p = p.rchild else: print(x + " already present in the tree") return temp = Node(x) if par is None: self.root = temp elif x < par.info: par.lchild = temp else: par.rchild = temp def search(self, x): return self._search(self.root, x) is not None def _search(self, p, x): if p is None: return None if x < p.info: return self._search(p.lchild, x) if x > p.info: return self._search(p.rchild, x) return p def search1(self, x): p = self.root while p is not None: if x < p.info: p = p.lchild elif x > p.info: p = p.rchild else: return True return False def delete(self, x): self.root = self._delete(self.root, x) def _delete(self, p, x): if p is None: print(x, " not found") return p if x < p.info: p.lchild = self._delete(p.lchild, x) elif x > p.info: p.rchild = self._delete(p.rchild, x) else: if p.lchild is not None and p.rchild is not None: s = p.rchild while s.lchild is not None: s = s.lchild p.info = s.info p.rchild = self._delete(p.rchild, s.info) else: if p.lchild is not None: ch = p.lchild else: ch = p.rchild p = ch return p def delete1(self, x): p = self.root par = None while p is not None: if x == p.info: break par = p if x < p.info: p = p.lchild else: p = p.rchild if p is None: print(x, " not found") return if p.lchild is not None and p.rchild is not None: ps = p s = p.rchild while s.lchild is not None: ps = s s = s.lchild p.info = s.info p = s par = ps if p.lchild is not None: ch = p.lchild else: ch = p.rchild if par is None: self.root = ch elif p == par.lchild: par.lchild = ch else: par.rchild = ch def min1(self): if self.is_empty(): raise TreeEmptyError("Tree is empty") p = self.root while p.lchild is not None: p = p.lchild return p.info def max1(self): if self.is_empty(): raise TreeEmptyError("Tee is empty") p = self.root while p.rchild is not None: p = p.rchild return p.info def min2(self): if self.is_empty(): raise TreeEmptyError("Tree is empty") return self._min(self.root).info def _min(self, p): if p.lchild is None: return p return self._min(p.lchild) def max2(self): if self.is_empty(): raise TreeEmptyError("Tree is empty") return self._max(self.root).info def _max(self, p): if p.rchild is None: return p return self._max(p.rchild) def display(self): self._display(self.root, 0) print() def _display(self, p, level): if p is None: return self._display(p.rchild, level + 1) print() for i in range(level): print(" ", end='') print(p.info) self._display(p.lchild, level + 1) def preorder(self): self._preorder(self.root) print() def _preorder(self, p): if p is None: return print(p.info, " ") self._preorder(p.lchild) self._preorder(p.rchild) def inorder(self): self._inorder(self.root) print() def _inorder(self, p): if p is None: return self._inorder(p.lchild) print(p.info, " ") self._inorder(p.rchild) def postorder(self): self._postorder(self.root) print() def _postorder(self, p): if p is None: return self._postorder(p.lchild) self._postorder(p.rchild) print(p.info, " ") def height(self): return self._height(self.root) def _height(self, p): if p is None: return 0 hL = self._height(p.lchild) hR = self._height(p.rchild) if hL > hR: return 1 + hL else: return 1 + hR ################################### bst = BinarySearchTree() while True: print("1.Display Tree") print("2.Search(Iterative)") print("3.Search(Recursive)") print("4.Insert a new node(Iterative)") print("5.Insert a noew node(Recursive)") print("6.Delete a node(Iterative)") print("7.Delete a node(Recursive)") print("8.Find Minimum key(Iterative)") print("9.Find Minimum key(Recursive)") print("10.Find Maximum key(Iterative)") print("11.Find Maximum key(Recursive)") print("12.Preorder Traversal") print("13.Inorder Traversal") print("14.Postoder Traversal") print("15.Height of tree") print("16.Quit") choice = int(input("Enter your choice : ")) if choice == 1: bst.display() elif choice == 2: x = int(input("Enter the key to be searched : ")) if bst.search1(x): print("Key found") else: print("Key not found") elif choice == 3: x = int(input("Enter the key to be searched : ")) if bst.search(x): print("Key found") else: print("Key not found") elif choice == 4: x = int(input("Etner the key to be inserte : ")) bst.insert1(x) elif choice == 5: x = int(input("Enter the key to be inserted : ")) bst.insert1(x) elif choice == 6: x = int(input("Enter the element to be deleted : ")) bst.delete1(x) elif choice == 7: x = int(input("Enter the element to be deleted : ")) bst.delete(x) elif choice == 8: print("Minimum key is ", bst.min1()) elif choice == 9: print("Minimum key is ", bst.min2()) elif choice == 10: print("Maximum key is ", bst.max1()) elif choice == 11: print("Maximum key is ", bst.max2()) elif choice == 12: bst.preorder() elif choice == 13: bst.inorder() elif choice == 14: bst.postorder() elif choice == 15: print("Height of tree is ", bst.height()) elif choice == 16: break else: print("wrong choice") print() Computer Science Tutorials Data Structures Tutorials computer scienceData Structure